
Diss. ETH No 7195

Code Generation

and-the
Lilith Architecture

Dissertation

submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH ·

for the degree of
Doctor of Technical Sciences

presented by

Christian Jacobi

Dipl. Math. of the Swiss Federal Institute of Technology
born August 10,1951

Citizen of Ziirich (Canton of Zi.irich)

Accepted on the recommendation of
Prof. Dr. N. Wirth
Dr. P. Schulthess

1982

1

Abstract

The Lilith computer is particularly suited to execute Modula-2 programs. The
instruction set is chosen to reflect the needs of the compiler. Compilations,
therefore, are easy and produce dense and fast code. There are special purpose
high-level instructions as well as quite primitive operations.

The Lilith computer uses a stack for the evaluation of expressions. These evaluations
are done with the use of a small hardware expression stack. The hardware expression
stack permits arithmetic operations without memory access. It allows to combine the ·
simplicity of a stack computer with the efficiency of a computer with general
registers. The compiler guarantees that the expression stack never overflows. Lilith
is also a stack computer in another sense; it allocates data segments of procedures on
a stack located in main memory.

The memory is subdivided into several areas. Local data, global data, and code are
accessed relative to specific registers. These registers are updated on execution of a
call or return instruction. Data of external modules are accessed indirectly through
pointers in the module table. Relative addressing allows usage of short offsets. Over
95% of all load instructions need an offset of less than 12. For these instructions the
offset is directly encoded in the instruction byte.

Some language constructs suggest the provision of corresponding machine
instructions. The CASE and the FOR statements suggest corresponding case and/or
instructions. Most instructions do not correspond to Modula structures in such a
simple manner. However, the influence of Modula in defining the overall behaviour
of otherwise general instructions is pervasive.

In structured programming languages short-distance jumps occur much more
frequently than long-distance jumps. The compiler performs a jump optimization.
For most jumps a short-address instruction is generated.

Defining our own instruction set allowed simple code generation. In spite of this,
programming the code generation part of the compiler required more work than
usual, since a lot of thought went into defining the instructions. As a result, simple
code generation and efficient object code was achieved. The code of the Lilith
computer (M-code) is more than twice as dense as the code of the well-known
PDP-11.

2

Zusammenfassung

Mit dem Projekt, einen eigenen Rechner zu entwerfen, haben wir drei Hauptziele
verfolgt. Wir wollten forschen, uns selber weiterbilden und als Resultat auch noch

ein gutes Werkzeug zur Softwareherstellung erhalten. Wir sind konsequent nach

einem Top-Down Verfahren vorgegangen. Zuerst wurde die Programmiersprache

Modula-2 entworfen. Dies ist die einzige Programmiersprache, welche wir auf dem
Lilith Rechner verwenden. Die Architektur des Rechners ist derart festgelegt, dass
der Compiler einfach wird, aber trotzdem sehr effizienten Code erzeugt. Schliesslich
wurde die Hardware darauf ausgelegt, dass diese Architektur effizient microcodiert

werden konnte.

Stack Rechner erlauben einfache Code Generierung, gelten sonst aber nicht als
effizient. Der Lilith Rechner hat einen kleinen Hardware Expression-Stack.
Stackoperationen sind dadurch in einem einzigen Maschinenzyklus moglich und
benotigen keine Speicherzugriffe. Der Expression-Stack erlaubt, die Einfachheit
einer Stack Maschine mit der Effizienz einer Register Maschine zu kombinieren.
Der Compiler stellt sicher, dass der Expression-Stack nicht iiberHiuft.

Auf den Speicher wird auf strukturierte Weise zugegriffen. Lokale Daten, globale
Daten eines Moduls und Instruktionen werden relativ zu entsprechenden Registern­

adressiert. Diese Register werden bei Prozeduraufrufen oder Riickspriingen
automatisch nachgeftihrt. Die Daten extemer Module konnen erreicht werden,
indem uber die Modul-Tabelle zugegriffen wird. Die Adressierung relativ zu den
entsprechenden Registem erlaubt kurze Adressen (Offsets). Auszahlungen haben
ergeben, dass iiber 95% aller Load-Instruktionen einen Offset kleiner als 12
benotigen. Fiir diese Instruktionen ist der Offset im lnstruktionsbyte codiert.

Fiir gewisse Sprachelemente lohnt es sich, entsprechende Maschineninstruktionen zu
definieren. Die CASE Anweisung wird in die entsprechende Case-Instruktion
compiliert. Analoge Spezialinstruktion sind ftir die FOR Anweisung reserviert.
Meistens sind aber dieM-Code lnstruktionen nicht so offensichtlich auf Modula-2
zugeschnitten. Die Eigenschaften der Sprache Modula-2 wiederspiegeln sich mehr in
der Gesamtstruktur des Instruktionssatzes a1s in den einzelnen Instruktionen.

Kurze Spriinge treten wesentlich haufiger auf als Spriinge uber weite Strecken. Die
Lange eines Programmes kann wesentlich reduziert werden, wenn ftir kurze Spriinge
auch kurze Instruktionen generiert werden. Der Modula Compiler flihrt eine
Sprungoptimierung durch. Diese Sprungoptimierung ist wesentlich einfacher als
entsprechende in der Literatur erwahnte Optimierungen. Sie basiert auf den
Tatsachen, dass Sprunginstruktionen relativ addressiert werden, und dass flir
strukturierte Anweisungen sowohl das Sprungziel wie auch die Absprungstelle
Bestandteil derselben Anweisung sind.

3

Die Definition eines geeigneten Instruktionssatzes hat zu einer relativ einfachen
Codegenerierung gefUhrt. Trotzdem steckt dadurch im Codegenerierungsteil des
Compilers mehr Arbeit als iiblich. Als Resultat entsteht eine einfache
Codegenerierung, die dennoch ausserst efftzienten Code erzeugt. Der Code fiir den
Lilith Rechner (M-Code) braucht weniger als die Hrufte des Speicherplatzes des
entsprechenden PDP-11 Codes.

4

Table of contents
1. Introduction 6

1.1. Highlights of the architecture of the Lilith machine 10
1.2. Short aside on optimality and optimization 11

2. Overall structure and procedure call 15
2.1. The expression stack 15
2.2. Addressing of data 16
2.3. Global data of modules and code 18
2.4. Local data of procedures 20
2.5. Procedure calls 22
2.6. Coroutine calls 26
2.7. Interrupts and system initialization 28

3. Representation of data 32
3.1. Simple types 32
3.2. Arrays and other structures 33
3.3. Compile-time representation of data 35

4. Compiling control statements 41
4.1. Statements with specific high level instructions 41

4.1.1. The CASE statement 42
4.1.2. The FOR statement 43

4.2. Statements compiled to simple instructions and jump optimization 46
4.2.1. The REPEAT statement 46
4.2.2. The WHILE statement 46
4.2.3. The IF statement 47
4.2.4. The LOOP and EXIT statements 48
4.2.5. Keeping track of code moves 49
4.2.6. The value of the short and long jump optimization 50

4.3. High-level instructions versus simple instructions 52

5. The encoding of instructions 54

6. Conclusions 58
6.1. What can be done better next time 59

Acknowledgements 66
References 67

Appendix
Appendix 1: Table of instructions
Appendix 2: Special memory locations
Appendix 3: TheM-code interpreter
Appendix 4: Distribution of instructions
Appendix 5: Benchmark tests
Appendix 6: Jump optimization for IF statements

Curriculum vitae

5

72
74
75
94
97

105

107

6

1. Introduction
The Lilith computer [Wirl] was built with three main goals in mind: computer
science research, experience in hardware design and producing modem computers
for future use. A top down approach was followed: first the programming language
Modula·2 (henceforth called Modula) was defined. Next, the Lilith computer was
designed to be programmed in Modula, exclusively. The architecture of the Lilith
computer was chosen so that the compiler can be simple and still produces short and
fast object code. Finally, the hardware was designed to allow efficient microcoding

of the desired architecture . .

Modula grew from PASCAL [Wir2], where its data structures and structured
statements originated. From MODULA [\Vir3] comes a more modem syntax, in
which every structure ends with an explicit termination symbol, and a powerful
module concept. The module concept is influenced by Mesa [MMS]. This concept
allows partition of large programs into individual modules which can be separately
compiled [Gei]. A definition module specifies an interface which is completely
realized in a corresponding implementation module. Any program using the
interface refers to the defmition part only. Modula includes a coroutine concept
which allows the programming of user-tailored schedulers or device drivers. The
language is essentially machine independent, but a predefined module exists which
contains some machine dependent features. A powerful feature of Modula is its
procedure type. Procedures may be freely assigned to variables of the corresponding
procedure type; calling the variable is equal to calling the assigned procedure.

The first compiler for Modula was written for the PDP·ll [PDP] computer. It stems
from the compiler for MODULA [Le], but it is reduced to five passes. The first pass
performs lexical analysis and syntax checking. The second pass processes the
declarations. The third pass does type checking for the statements. Passes four and
five perform code generation for expressions and statements. For the Lilith
computer, the code generation was completely rewritten and requires only one pass.

The division of the compiler into several passes was done mainly because of memory
limitations on the PDP-11. The passes communicate through the symbol table, a few
global variables, and interpass files. A pass reads the interpass file, except pass 1
which reads the source, accumulates some information in the symbol table, and
writes another interpass file. The interpass files retain the syntactic structure of the
original Modula program and are scanned with the method of recursive descent .
compiling. The flnal code-generation pass scans the entire statement part of the
program. It needs no scanning with respect to imports and declarations. The
compilation of expressions is simplified, since the evaluation of constant expressions
;.,. .,,,.~!lrlu rlmH:>: hP.fore code 2eneration. This thesis will treat the code 2eneration

7

aspects of the compiler only. Usually the code generation part of a compiler is
heavily influenced by the machine architecture; for Lilith, the reverse is also true.

Early computers were designed with the machine language programmer in mind. A
lot of special cases are obvious to the human assembly programmer. Compilers
generate code in a different way. A compiler is easy to write if its early code
generation decisions need not be reconsidered. This can be achieved, if the target
machine is defined with regularity and in an orthogonal manner [Wul]. If something
is done one way in one place, it ought to be done the same way everywhere. Also, it
should be possible to combine orthogonal concepts arbitrarily.

Another principle to simplify compiler decisions is to allow only one way to do a
thing. It seems to be no advantage to make the machine simpler and thereby
eliminate some choices; the compiler could simply ignore them. However, not to
implement unnecessary hardware features reduces complexity and omits the time
and space used to select between alternatives.

Some current computer architectures like the PDP-11 or the VAX [VAX] allow both
easy assembler programming, and fairly easy code generation for compilers. Usually
this compromise is paid for by obtaining less then optimal code density. It is easy to
generate simple code, but generating optimal code is still hard. Computers like the
Burrough 5000 [Bur] are designed to be programmed in high-level languages
exclusively. If only a trusted compiler is allowed to generate code, some security
constraints can be checked by the compiler instead of at runtime.

Architectures which support only one programming language can avoid a lot of
instructions. However, such an architecture can only be useful if the chosen
programming language is powerful enough. Other architectures have some special
instructions designed to implement some high level language constructs, these
instructions sometimes look simply like an add-on feature.

General stack computers are believed to simplify code generation, but execute
programs less efficiently. Register-machines allow some optimizations in register
usage. However, this is possible only if a sufficient number of registers are available.
It is the author's experience that the 8 registers .of the PDP-11 are of no real help.
Four registers are constantly used for fixed purposes of hardware and compiler
dictated structures, one register must be held free to allow special operations (eg.

MOD) which need two adjacent registers. The number of remaining registers is not
sufficient to avoid operand fetching, since any useful value has been overwritten
again. On the other hand, a compiler optimizing the use of three registers is not less
complex as a compiler optimizing the use of 16.

SnmP. ~rchitectures trv to speed up stack operations with cache memory. Caching is

8

still more time consuming than accessing a register, since a memory request is to be

prepared, and a decision not to use the memory must be made. The HP 3000 [HP]
computer introduces a special cache which is only used for the top four elements of

the stack. The Mesa architecture [JW] introduces an evaluation stack, which works

with register speed and needs no special connection to the memory.

A good encoding of instructions primarily saves memory space for programs.

However, to fetch fewer instruction bytes also reduces the time necessary for
memory accesses. J. Wade [WS] describes an algorithm to find the optimally

compact encoding of instructions, but he ignores implementation costs. C. Foster

[FG] recognizes that most instructions are used only in connection with very few

other instructions. He proposes that every instruction has a restricted number of

successors and an escape instruction, which is used if another instruction follows. A.

Tanenbaum [Tan] proposes an instruction set which is based on an empirical study of
programs. This instruction set uses byte encoding and is designed to be decoded
with minimal hardware effort. In spite of not being optimal, he gets very dense code

with minimal instruction decoding time.

The Lilith architecture is heavily influenced by the Mesa [TCLSB] architecture and is

.. a combination of the best of these aspects. This combination makes the Lilith

architecture new and remarkable. It is designed to execute a high-level language;
there ·is no assembler. Some special high-level instructions implement exactly the

behaviour of a corresponding modula statement, and also the global aspects reflect
the language. Most features are accessible in exactly one way. It is a stack machine,

which uses a memory stack for procedure calls and a fast evaluation stack for
expressions. The instructions, most of which use one byte only, are well encoded.

One of the most exciting aspects is the direct mapping of separately compiled

modules onto the Lilith architecture. The direct consequence, to defme an
instruction to address data of imported modules, is of only minor importance.

However, the consequences on the overall structure of the architecture are crucial.
Mainly the access of global data of the current module and the procedure call
mechanism are designed with respect to separate compilation. The partition of
memory segments mirrors the partition of the program into modules.

Still, the Lilith architecture is quite simple. Some of its few complexities come from
being a real computer and not just a study of theoretical aspects. The architecture is

not always as simple as possible, but complexity is accepted only where it results in
substantial optimizations.

The architecture was defined in parallel with the code generation of the compiler.

The distribution of the complexity between compiler and instruction set is carefully

planned. For example overflow of the evaluation stack is recognized at compile

9

time; there is no test for this at run time. Optimization of jump instructions is done
by the compiler, whereas for the CASE statement a more complex instruction can be
generated, which needs no optimization.

Several people are involved in the Lilith project. We will concentrate on work
mentioned in this thesis.

Niklaus Wirth guided the whole Lilith project; together with him, the author
designed the instruction set. Niklaus Wirth, Richard Ohran and Jirka Hoppe have
developed the hardware. Werner Winiger did the micro-programming. Leo
Geissmann programmed the compiler-passes one to three. Svend E. Knudsen
worked on pass one early in project. The author did the early programming of code
generation for the PDP-11 computer, which later, was taken over by Anton
Gorrengourt. Code generation for the Lilith computer was completely done by the
author. Further, the author made the measurments to document the code density
and the benchmark measurments.
Svend E. Knudsen designed the operating system; Werner Winiger the Editor. The author
programmed the screen and window-handler packages and coordinated the work on the
debugger.

The main innovative concepts of the Lilith architecture which are due to the author's
work are:

The overall structure of Lilith to represent programs. One single frame address
table serves to access procedures from separate compiled modules. The frame
address table contains the addresses of the data frames; the pointer to a code
frame is part of the corresponding data frame. Support of separate compilation
by the architecture has proven to be very important

The procedure call mechanism, which is very efficient in most (simple) cases but
needs additional overhead for rare complex calling situations. Further, the
typical distinction of local and exported procedures is ommitted.

The Modula oriented high-level instructions (FOR, CASE, short circuit and/or
branches). However, such instructions are also useful primitives for compilation
of other high -level languages.

10

1.1. Highlights of the architecture of the Lilith machine

The expression stack allows arithmetic operations on a small but fast hardware stack.
It has the simplicity of stack machines without the penalty of additional memory

requests.

All computational operations are stack operations with known type and implicit
overflow test. No additional instructions are needed for these tests and for tests
against NIL access.

A special instruction fetch unit allows separate byte access to the code, in spite of the
machine being word addressed. The instruction fetch hardware fetches the code
from a separately specified code frame. The code address space is not limited by the
program counter.

The carefully planned encoding of the most frequently used instructions results in
very short code. The typical frequency of the instructions is known, since they are
generated by a single compiler.

Relative addressing to module and procedure data results in short offsets. It also
fully supports separate compilation with independent code and data frames.
Procedures and modules are referenced by numbers, not addresses. This simplifies
the work of the linker; it allows linking at load time. Further, it results in shorter
code.

The completeness of the instructions with respect to Modula allows for every Modula
construct to be compiled into few (mostly one) powerful instructions. Many Modula
features have their exact representation in machine instructions.

The instruction set is not exclusively Modula oriented; it has a complete set of
operators, even if not all are now used for Modula. Shift, rotate, double precision
and device-accessing instructions have not been· forgotten. The Modula language has
the ability to execute special machine instructions and allow for extensions or
modifications of the language without redefining the machine.

Lilith is a single user machine; no protection mechanism is needed. In case of severe
errors, rebooting the machine is always possible. There are no priviledged
instructions which the compiler cannot generate normally.
The mouse, the raster scan display, which displays main memory with its bitmap, font
structures and instructions are important aspects of the machine but need not be supported
by the compiler; they are therefore not discussed in this paper.

11

1.2. Short aside on optimality and optimization

Optimization is most often done for optimization of execution time. At least as

important is an optimization of memory space. On minicomputers, memory is
limited, whereas time is available.

From a more general viewpoint, only costs are minimized. Therefore, minimizing
the programer's work is considered more important.

Real time applications show a special need for optimality: either the computer is fast
enough or it fails completely.

Sometimes it is better to buy a faster computer than to optimize too much.

Where can optimization be done?

Optimality may be achieved in many places. The solution of a problem with a
computer is done on several levels. Any of these levels are candidates for
improvement. Any translation from one level to the next lower level can be used for
optimization. Typically, the levels at which a problem is considered are the
following:

Choice of the algorithm
Programming the algorithm
Peculiarities of the programming language
Translation of the programming language into machine code
Peculiarities of the machine code
Execution of the machine code (processor speed)

Typically, the term optimization is used for optimization of translation of the
programming language into machine code. We should not forget the other

possibilities, however.

Sometimes an optimization is made superfluoUs because the next lower level does
not offer more than one choice for the translation. In fact, this can have advantages.
This reduction in choice also results in a reduction in complexity, and it may result in

memory savings and faster execution.

A classification of compiler optimizations

Register optimization

The CDC Pascal compiler [Amm] remembers which variable or address is loaded
in a register and can sometimes avoid the reloading of this value. The compiler

12

assigns to any register a value function which shows the probability that the
register's content may be used a second time. A more sophisticated optimization
would also try to avoid register stores and keep the value in a register only. A
data flow analysis can replace the probabilistic assignment of a register number.

Span-dependent optimizations

Since short-distance jumps occur much more frequently than long-distance
jumps, the code length can be reduced considerably when short addresses are

used for short-distance jumps.

Variables may be reordered in a way that more frequently used variables are
accessed with shorter instructions.

Pre-evaluations

The simplest optimization of this type is the evaluation of constant expressions
at compile time or the replacement of multiplication by a specific constant with
shifts.

The CDC Pascal compiler replaces multiplications by some constants with two shifts
and an addition. Which operations should be replaced depends on the relative speed of
the instructions.

We consider elimination of common sub-expressions and moving computations
out of loops as optimizations of this type. Replacing the multiplication by the
FOR loop control variable in the FOR loop with additions is called reduction in
strength.

Any of these optimizations may be done on a local or a more global basis and at
different places in the compilation process. Also, an important criterion for locality
is whether the optimized environment includes loops and conditional statements.

Programming languages which support abstract data types show new optimization
possibilities. Abstract data types are often handled with very short procedures. The
procedure call may need more code than the whole procedure body. A compiler
with very global optimization could try to generate inline code for such procedures.

We prefer local optimizations and the optimizations which are done while the
structure of the compiled program is still known to the compiler. Other compilers
often use later phases for optimizations.

A typical optimization on already generated code, is peephole optimization [Kee].
The instructions are analyzed in a very small context and some combinations of
instructions are replaced by others. Such a replacement may allow further
optimizations in late optimization passes.

13

Some general remarks

Several authors distinguish between machine-independent and machine-dependent
optimization. However, machine-independent optimizations often needs be
repeated on a machine-dependent level.

Sometimes it is not clear at all what is optimization and what is simply "not
generating foolish code". Measuring the reward of optimization depends greatly on
what is chosen as the starting point. The poorer the non-optimized code, the better
are the results of an (so-called) optimization. When results of optimizations are
considered, it is very important in which order the optimizations are implemented
(or better, measured).

The simple optimizations usually result in big benefits. Further improvements of
the code need much more sophisticated algorithms; to generate really optimal code
is not worth the enormous costs.

It is a good idea to concentrate on optimization of user-inaccessible features and to
leave optimization, which the programmer can do, to the programmer; at least as no
automatic program generators are considered.

What is done for the Lilith computer

On Lilith, all levels are candidates for optimizations. The language Modula is
defined in such a way that simple constructs are easy to program. Inefficient features
are not built in but, rather, must be explicitly programmed. The language contains
constant expressions explicitly. Special standard procedures INC and DEC are
introduced. Most identical subexpressions occur in a very simple context and are
replaced by use of the INC and DEC procedures. Thus, hypothetical optimization to
recognize identical subexpressions looses most of its advantages.

The compiler performs an optimization for short and long jumps. Except for the
EXIT statement, all statements are compiled with the shortest possible jump
instructions.

Shifts and masks are generated for multiplications and divisions with constants, if
their values allow it.

Constant expressions are evaluated, even if they are not in the declaration part.

The compiler omits any addition of zero, multiplication by one, and code generation
for branches of IF statements which can never be executed because of constant
conditions. However, these topics are not thought of as an optimization, but are
implemented to allow parametrizations of programs.

14

A large effort is spent on an optimal instruction set. The encoding of the instruction
set is an obvious place where optimization is done. At least as important are the
special instructions to implement some statements in an optimal way and the benefits
of an adequate global structure.

15

2. Overall structure and procedure call
In any language which allows procedures to be activated recursively, it is an
appropriate mechanism to use a stack allocation strategy for local variables. Each
activated procedure reserves a procedure segment on the top. At the beginning of
each procedure segment is a procedure mark. The procedure mark saves the
information used to return from the procedure activation. We will call this stack
used for procedure segments a data stack.

Modula allows coroutines, therefore, each coroutine needs its own data stack.
Note: The Mesa architecture [JW] allocates procedure segments in a heap. Using a heap has
the advantage of using all available memory in a big pool. The program does not crash if
one coroutine produces a stack overflow. As long as memory is available, no stack overflow
occurs. On the other hand, using separate stacks for each coroutine allows to avoid storage
overflows in critical system coroutine&. More important, using a stack mechanism is much
faster than using heap management. Allocating and deallocating elements in a heap is
certainly more complicated than on a stack.

2.1. The expression stack

The Lilith computer is a stack computer. All expression evaluation is done on a
special stack, called the expression stack.

Stack computers are known to simplify compilation of expressions considerably. But
usually stack computers are less efficient than computers with general registers.
Pushing the operands and popping results of expressions doubles the memory
references. The Lilith expression stack is a small hardware stack; accessing the
expression stack requires no memory references. While no good register
optimization is considered, the expression stack allows faster expression evaluation
than a computer with general registers would. Using a stack scheme, specifying
register numbers may be omitted.

The expression stack is more efficient than a stack in main memory and speeding up
the memory access with a cache. Caching mechanisms are typically intransparent to
the processor, which "sees" normal memory requests. The special hardware stack is
much simpler and is directly accessed by the arithmetic unit.

The hardware expression stack is implemented with a 16 word stack and a separate
register. The top element of the expression stack is kept in the register; the hardware
stack contains the next element down to the bottom element. This allows
simultaneous access to the two top elements of the expression stack. On a push
operation, the old top-of-stack contents (in the register) is pushed onto the hardware
stack and the register is loaded with the new value. Arithmetic operations take the
first operand from the register, pop the second operand from the hardware stack,
and reload the register with the result Finally, the pop operation delivers the value

16

from the register, which will then be reloaded with the value popped from the
hardware stack. Such operations may all be done in one machine cycle (micro-cycle).

The compiler has to check the expression stack so that it never overflows. In spite of
this check being a burden to the compiler, it eliminates the need of runtime checking
for stack overflow in arithmetic expressions. To enable the compiler to count the
values loaded on the expression stack, at procedure entry, the stack-pointer must
have a known value.

There is exactly one expression stack. On coroutine transfer (including interruptS)
the expression stack is saved onto the data stack of the interrupted coroutine and
restored from the data stack of the resumed coroutine. However, it is a compiler
convention that on executing a transfer the expression stack is empty. This does not
apply to interrupts.

2.2. Addressing of data

stack ES[top]

immediate n

local M[L + n]

global M[G + n]

indirect M[ES[top] + n]

external M[FrameTable[m] + n]

ES expression stack
M memory
m,n Consider the instructions and their formats:

8
I OP I

lOP! n I

OP n

OP n

OP m

"Addressing Modes"

n

17

The memory is organized in 16-bit words. It is subdivided into several areas. Data
of a procedure or a module is allocated in a segment. Variables are accessed relative

to the origin of the segment. For indirect addressing, absolute addresses are used.
These absolute addresses however, are never part of an instruction. Absolute

addresses are generated at run time . The code itself is independent of the location
of the segment. Since absolute addresses are stored in a word, 65,536 (64k) words
may be used to store data.

Local data are addressed via the L-register, which points to the local data segment.
Every procedure invocation allocates a new data segment on the stack of the running
coroutine. The dynamic link of the procedure segment points back to the segment of
the calling procedure.

Data of intermediate level procedures are still accessed relative to their data
segments. First, the start address of the segment is loaded on top of the expression
stack (by executing the get base (GB) instruction). The data themselves are then
addressed relative to the base, found on top of the expression stack.

Global data of the module currently under execution are addressed via the
0-register.

Global data of other modules are accessed via the frame address table. This table is
accessed by the instructions which access external data. Example: The load external
address (LEA) instruction may be used to load the address of an imported variable
onto the expression stack.

Variable parameters and dynamic memory (variables obtained with NEW) are
addressed by their absolute addresses. These absolute addresses (i.e pointers) are
stored in ordinary memory locations; The addresses themselves are accessed relative
to the origin of some segment, like other data. There is no instruction which accesses
absolute-addressed data directly.

Value parameters are treated like local variables.

Structured data are usually accessed indirectly. · A pointer to the structure is stored at
a known (at compile time) offset in the data segment This pointer is loaded on the
expression stack like the value of a simple variable. Elements of the structure are
accessed with an offset to this pointer.

The architecture needs three kinds of storage areas: code frames, data frames, and
stacks. The remaining memory is used for other purposes like heaps, fonts or
bitmaps. Our Lilith computers are equipped with 128k words of memory. The
normal instructions ·to access data are designed for only 64k. The upper 64k is
accessed by special instructions and by instructions which allow access to fonts and

bitmaps.

18

Frame Address Table

Code Frame 1 0 _1j Data Frame I F j_J
I _.. I -""

module base code base
procedure offset - r--

-f-

.
Coroutme Stack

Process
Descriptor

Local Data

(work stack)

unused

"Global Structure"

Global Data

Code P2

Code P1
lPc~

Code PO

Registers

L pointer to local data segment
G pointer to global data segment

S pointer to top of stack
· H pointer to end of stack
F pointer to current code frame

PC offset to current Instruction (byte)
P pointer to current process descriptor

M interrupt mask

2.3. Global data of modules and code

~

~

~

The global variables of each (separate) module are represented as a so-called data
frame. This area is allocated by the loader. The base addresses of all loaded frames
are assigned (by the loader) to a fixed area of the store, called the frame address
table. The frame address table can contain up to 256 entries, since it is indexed with
byte values.
However, the debugger can handle at most 229 entries; this will be explained later.

The G-Register contains the base address of the data frame which belongs to the
module containing the currently executed procedure. The G·register value must be

19

changed whenever a transition occurs from one (separately compiled) module to
another. This is done automatically by the frrmware when a call instruction is
executed.

The first three words of a data frame are reserved:

Word 0: pointer to the code frame {F-register)
Word 1: initialization flag
Word 2: pointer to an area used for string literals

The subsequent words hold the global data of the module. All global variables are
addressed relative to the data frame origin.

The pointer to the code frame is crucial for the machine architecture. This pointer is
the only information indicating where the code of a module is allocated.

The initialization flag is a private convention of the compiler. The compiler requests
the loader to initialize this word to zero. The module initialization procedure sets
this flag to one with the test and set (TS) instruction before initializing the module.
If the flag shows that the module has already been initialized, the initialization
procedure returns.
Note: A module tries to initialize any module it imports. There may be several attempts to
initialize a module. Therefore, it must check to assure its initialization code is executed only
once.

The pointer to the string template area is implicitly used by the load string address
(LSTA) instruction. String templates are used for passing literal strings as actual
parameters, because the procedure must receive an address.

The F·register points to the base address of the code of the module which contains
the procedure currently executed. Code is accessed relative to the F·register. The
hardware adds the F-register to the program counter (PC) on any instruction fetch.
The code of each separately compiled module is represented as such a segment,
called a code frame. The base address of a code frame is assigned (by the loader) to
word 0 of the corresponding data frame, and the one which is currently under
execution is also contained in the F·Register. The F-Register value is loaded from
the data frame whenever the G-Register is changed.

A module contains a number of procedures. The entry points (offsets to F) of these
procedures are stored in the first words of the code frame of the module; location n
contains the offset to the procedure n. (The compiler uses procedure 0 for the
module initialization). The further locations contain the actual code of the
procedures.

The hardware interprets the content of the F· Register as the address of a
double-word. The program counter is an offset to the· F-register; the hardware
performs an addition, which results in an 18-bit address of an instruction byte. This

20

allows the code to be loaded anywhere in a 128k word memory. The length of a

single code frame is restricted to 32k bytes.
Note 1: The .only two programs which need to know this behaviour are the .loader (for
initialization of the code frame pointers) and the debugger. (The debugger mspects the
codeframes to get knowledge about procedure numbers).

Note 2: It is an implication of separate compilation that modules must be initialized. The
PDP-11 Modula system takes a different approach for the initializing of modules. The
compiler generates only one call instruction per module for the initialization of othc:r
modules. The linker inserts an initialization procedure address into the call instruction. It IS

the linker which detects the order for module initialization and the linker selects which
module initialization must be called from which module.

This PDP-11 initialization scheme needs less space at runtime, since every module initializes
at most one other module. On Lilith, however, the linking may be postponed until the
module is loaded. If on Lilith the loader were to take care of the module initializations, the
algorithm to detect the order would need more memory space than the compiler generated
algorithm which tries to initialize every imported module. In addition, the Lilith mechanism
does not need the complexity (at link time) of the PDP-11 mechanism.

2.4. Local data of procedures

Data segments for local data are allocated on the stack of the current coroutine
whenever a procedure is called. This data stack is distinct from the expression stack;
the data stack is in the main memory, and its size is limited only by the memory area
available for the coroutine. The L-register points to the data segment of the current
procedure. The first words of any procedure data segment are used for a procedure

mark. The S-register points to the top of the stack; its value gives the base address
where a new segment is created. The S-register is also incremented whenever more
memory is reserved for local data; therefore the area between the L-register and the
S-register is the most recent data segment. The stack area limit is assigned to the
H-Register. The Lilith uses the H-register to check against stack overflow on
procedure entries or data allocation.

The L-Register points to the most recent data segment or procedure mark. It is
therefore the base address of variables local to the currently executed procedure.

To allow unstacking of data segments a link is needed. It is called the dynamic link

and chains every data segment to its immediate predecessor in the data stack.

Modula ali;::;ws, like other block structured languages, to access data of intermediate
level procedures. The GB instruction loads the base address of an intermediate
procedure data segment. To get this base address. a second link chain is maintained,
which links the data segments the way the compiler sees the situation. These links
are called static links. The get base (GB) instruction follows the static link and
pushes a base address onto the expression stack.

Another, well known method to get intermediate procedures' data segments is a

21

display, which has been invented by Dijkstra [Dij]. A display speeds up the access of
intermediate-level data since one indirection allows to get any intermediate level
base address. However, a display must be updated on both procedure call and
procedure return. A static link only needs to be set up at procedure call time. On
procedure return, the top static link is forgotten together with the data segment of
the released procedure.

The frequency of accesses to intermediate level data is drastically reduced in Modula.
Because of the module structure procedures are local to modules and use more
global data instead of intermediate data. This behaviour tells us that a static link is
better suited to Modula than a display. We prefer to speed up procedure calls.

The PDP-11 Modula implementation (and the original Modula-1 implementation
[Le]) use a display for access of intermediate level data but speeds up the
construction of the display: The compiler checks for each procedure if its data is
accessed by other, local procedures. Only if this is the case the procedure modifies
the entry in the display.
Note: We modified the compiler to count the procedures which need the display to be
maintained. The code generation pass itself had only three such procedures.
For Lilith, because of the rare use of intermediate levels, we preferred to omit the compiler
complexity of checking data access by inner procedures and to use the static link method.
As a further consequence the maximum nesting level of procedures is increased to the
maximum level the GB instruction may handle, and is not restricted to the size of a display.

The procedure mark is four words long. The fields in the procedure mark are the
following:

Word 0: Static link
Word 1: Dynamic link
Word 2: Return address and external flag
Word 3: Reserved for interrupt mask

The procedure mark is created by the execution of a procedure call instruction; the
procedure return instruction removes the mark. The enter priority (ENTP) and exit
priority (EXP) instructions use the mark for storing the interrupt mask.

Several stacks of data segments may exist. Every coroutine has its own stack for its
procedure invocations.
Note: Word three of a procedure segment (in the procedure mark) is reserved for the
interrupt mask. The instructions to handle priority use this word implicitly. For procedures
without priority, this word is not used. Through the absence of a one byte instruction for
loading this word, the architecture suggests its reservation. However, the decision not to
define an instruction to access this word [LLW3] was taken only after it was known that the
address generation part of the compiler ·does not distinguish whether a procedure is declared
with priority or not. We do not consider this to be optimal.

22

2.5. Procedure calls
General format of the procedure mark

0: ~~~~~~~~~----~
1: ~=-~~~~~~~~~~
2:
3:

the software mask is saved and used by the code of the procedure

if necessary

called as external procedure

ex mod proc

called as local procedure

CLn

CL proc

"Procedure mark formats"

called as formal procedure

CF the procedure variable is saved

and eliminated by the calling

environment of the procedure

called as intermediate procedure

Cl proc

The procedure call mechanism is very important for implementing high-level
programming languages. For this reason, newer computer architectures usually
support additional, specific call instructions. The Lilith computer supports only
those call instructions needed by the high-level language, no alternate, more
primitive subroutine call mechanisms exist. The call instructions are completely
embedded in the overall structure of the machine. ·

For parameter transmission the expression stack is used; either the value or the
address of the parameter is loaded onto the expression stack. Likewise, function
results are returned on the expression stack.

23

Therefore~ the general call mechanism is extremly simple.

The call instruction establishes the procedure mark on the data stack. Space for local
data is allocated by the ENfR instruction, which increments tho stack pointer. The
ENTR instruction is the first instruction of each procedure. Once space is allocated,
the parameters are copied from the expression stack into their proper memory
locations. The last instruction of a procedure is a return instruction (RTN).

Since the same procedure may be called either as a local, an external or a formal
procedure, the return instruction checks a flag in the mark indicating whether the G
and F-Registers must be reset or not. This flag is automatically set by the call
instruction.
Notes: The ENTR instruction implicitly tests for stack overflow. This instruction is even
used if the segment size is 0. The call instructions do not test for stack overflow. The
memory for the procedure mark is always available (because internally the H-register value
has been decremented). The overflow tests on allocation of a procedure mark and on
allocation of local data are combined in one single test.
Since one bit of the return address is used as a flag, actual code frames should not exceed the
length of 32k bytes.

There are four different call instructions:

eL call local procedure (also used for global procedures in the same separately
compiled module).

ex call external procedure. The F and G-Registers are reset.

er call of procedure at intermediate levels (neither local nor global).

eF call formal procedure (procedure declared as a variable).

CL, ex, and CI have a procedure number as an argument. ex has the .module
number (the index of the module in the frame address table) as an additional
argument. These arguments are part of the instructions. The additional argument of
CI is the base of a data segment (static link), which is put on the expression stack by
a preceding G B instruction.

CF is explained in the following chapter about procedure variables.

For most procedure calls the scheme used is very simple. However, procedure
variables or functions (or a combination of both) lead to more complex situations.
The complexity of special cases is the price for the efficiency of the code in the more
frequent cases.

24

Function calls

It is very natural to return function results onto the expression stack. However, some
difficulties with the expression stack occur. The compiler needs complete knowledge
of the number of values stored in the expression stack. Therefore, on function calls
the expression stack is saved on top of the data stack before the parameters are
loaded onto the expression stack and the function is called. The STORE instruction
serves that purpose.

After return from the function, the function result is on the expression stack. The
saved contents of the expression stack must be restored, but the function result must
remain the top value of the expression stack. The load after function (LODFW)
instruction is used to reload a saved expression stack below the top word which is not
modified. (For double word function results the LODFD instruction is used}.

Most often function calls occur in simple assignment statements where the
expression stack is empty. The compiler recognizes these cases and omits generation
of the STORE and LODFx instructions.

Procedure variables

Modula allows additional flexibility with respect to procedures. Procedures may be
objects that can be assigned to variables. Such variables may be called like ordinary
procedures. Procedure types are used rarely but they constitute a powerful facility.

For calling procedure variables, the call formal (CF) instruction is used. CF has its
arguments, the module number and the procedure number, packed in one word, on
the data stack, not the expression stack.

When the compiler detects a formal procedure call, code for loading the procedure
descriptor (on the expression stack) is generated before the code for loading the
parameters. The expression stack is a real stack, i.e. data elements below the top
cannot be accessed. Therefore, the STOT instruction has been introduced. It stores
the procedure descriptor from the expression stack to the top of the data stack. Only
after the procedure descriptor is moved are the parameters loaded onto the
expression stack, as for explicit procedure calls. The CF instruction reads the stored
procedure descriptor on the data stack and calls the procedure. The procedure
descriptor is removed after the return with a DECS instruction.

The reason why the CF instruction does not automatically remove the procedure
descriptor from the data stack is found in the debugger. The procedure and module
number of a procedure called by a CF instruction is found by inspecting the
nrn~P-riure descrintor below the procedure mark. Theoretically, the debugger could

25

detennine the procedure number with the help of a load map. If, at some later date,
exceptions were to be implemented, it should be possible to recognize the procedure
number without additional file access.

For function procedure variables, both the care taken for function procedures and
the care for procedure variables must be combined. Both the unused contents of the
expression stack and the procedure descriptor must be copied from the expression

stack to the data stack. On most occurrences of such calls the expression stack was
empty before, and no problems occur. The STOT and DECS instructions may be
freely combined with the returning of a function result.

In very few cases a function procedure variable is called with the expression stack not
empty. Combining the instructions in an orthogonal way would require the
following calling sequence:

STORE {store expression stack before)
Load procedure descriptor
STOT
Load parameters
CF
DECS
LODFW {reload expression stack below function result)

This instruction sequence would work perfectly well. However, the compiler cannot
generate it. The compiler does not recognize the moment when the evaluation of the
formal procedure descriptor starts, it cannot generate the STORE instruction in time.
The store expression stack with function variable (STOFV) instruction is invented to
help. It stores the expression stack with a procedure descriptor on top in the correct
order. The calling sequence is modified to

Load procedure descriptor
STOFV {stores expression stack and procedure descriptor)
Load parameters
CF
DECS
LODFW {reload expression stack below function result)

This sequence can easily be generated by the compiler.

Modula allows only global procedures to be used as procedure variables. However,
they may be declared in another module. This language restriction is very important.
If intermediate level procedures had to be stored in descriptors, it would be
necessary to store also their environment (static link). But much worse would be the
obligation to check whether the environment is still active when the procedure is

called.
Note 1: Another language restriction could replace the current restriction with the similar
result of disabling the call of procedure variables with non-existing environments:
Procedures are compatible to procedure types declared in the same or in higher levels only.
(The type declaration is important, not the variable declaration.)

26

Note 2: The numerical values of the procedure call instructions are defined with regard to
the debugger: A return address points to the next instruction to be executed. The debugger
recognizes the procedure number by inspecting the preceeding . code byte. It has to ·
distinguish the different call instructions of different lengths. The caU instructions have
opcodes greater than 345B. Because these numbers are bigger than module or procedure
numbers, the debugger can decide if a byte is the opcode of a call, a module number, or a
procedure number. ·

2.6. Coroutine calls

P+O:
1:

2:
3:

4:

5:
6:
7:

L+o:
1:

2:
3:

s

H

G register

L register

PC register

M register

s register

H register -
error code
error trap mask
procedure descriptor -
0

0

-

--

P register I

process descrip tor

_(the dummy procedur
formal procedure, fo

e is handled like a
r the debugger)

dummy procedu remark

1 .l offset to Svstem.EndProcess - -- - -used to produce en d of coroutine trap

I I
I · local data and marks of I
I I
I intermediate procedures I
I I

~ 1- top procedure m ark

I

I I
I I
I local data of top procedur~
I
I I

saved expression stack

lenoth of exoression stack

I I internally H-24 is used;

I free aera for stack to grow ~ .:. - - Jhis gives a reserve ar
I ::.... expression stack and

ea to save the

a procedure mark

on storage overflow

"Data segment (stack) associated with each coroutine"

27

Modula supports a coroutine mechanism to implement multiprogramming and
processes. Coroutines are executed sequentially. The processor is switched between
co routines by an explicit call of TRANSFER.
Note: It is unfortunat!! that the coroutine type is called PROCESS in Modula.

Any program may consist of several coroutines, each of them associated with its own
stack. Whenever a coroutine is initiated, an area of storage is allocated (as specified
by the programmer). This area constitutes the data stack containing the data
segments of the procedures.

At the bottom of the stack an area for a process descriptor is reserved. This process
descriptor is used to preserve the processor state while the processor executes
another coroutine. The P-register points to the process descriptor of the coroutine
under execution. (The process descriptor of the coroutine currently under execution
contains undefined values in the locations used to preserve the register contents; the
register contents are saved when the coroutine releases the processor).

The following table shows the assignment of the words in a process descriptor.

Word 0: the G-register
Word 1: the L·register
Word 2: the program counter (PC)
Word 3: the software mask (M·Register)
Word 4: the stackpointer (S-Register)
Word 5: the stack limit (H-Register + 24)
Word 6: used for the error code
Word 7: used for the error trap mask

Modula variables of type PROCESS are implemented as pointers to process
descriptors .

. Coroutine transfer

We represent a coroutine transfer in Modula by the standard procedure

PROCEDURE TRANSFER(V AR source, destination: PROCESS)

A transfer from one coroutine to another is caused by a TRA instruction and
constitutes a context switch. The instruction has three arguments:

A Boolean, which determines if the interrupt mask should be switched or kept;
this boolean is part of the instruction code itself. We will explain this flag in the
next chapter.

Two addresses, on the expression stack, of pointers to coroutines. The
PROCESS variable destination is the coroutine to be resumed. The PROCESS
variable source receives the suspended coroutine.

Note: The TRA instruction first fetches the destination and thereafter stores the source.
Thill order is relevant if source and destination are stored in the same variable.

28

Coroutines are created by the procedure

PROCEDURE NEWPROCESS(P: PROC; A: ADDRESS; n: CARDINAL;
VAR p1: PROCESS);

P: denotes the procedure which constitutes the coroutine
A: is the base address of the workspace used by the coroutine
n: is the size of this workspace
p1: is the newly created coroutine.

This procedure does not use special instructions; it is itself written in Modula (in
module System) and is loaded together with the program. However, the compiler
compiles calls of this procedure directly; i.e. it knows the procedure number. The
absolute linker has to guarantee that module System is loaded.

Building a coroutine stack with its process descriptor is easy as long as the
termination of the coroutine is not considered. When it terminates, this is the end of
a program. To interpret this behaviour, the coroutine stack is built in such a way that
its initialization procedure already has a return address. This return address then
points to a procedure (also in module System) where a TRAP instruction will be
executed (to tell the operating system the coroutine has ended). The implementation
of this procedure must consider the fact that after the return the L· Register is
undefined, so the procedure must not contain local data.

2. 7. Interrupts and System initialization

If the hardware provides co routines as a basic facility, an interrupt can take the form
of a coroutine transfer. In fact, it can easily be represented and interpreted as
equivalent to the operation

TRANSFER(interrupted, interrupthandler)

where interrupthandler is the routine to be resumed and where the pointer to the
interrupted routine is assigned to interrupted. A pair of memory locations,
(interrupted and interrupthandler,) is associated with each source of an interrupt
signal. Moreover, an action identical to that generated by an interrupt signal can also
be achieved by execution of certain instructions. These interrupts are called traps.
One such pair of memory locations is associated with traps.

Traps occur for so-called hard errors (errors which can destroy program control),
namely, range checks, NIL access, and stack overflow. The cause of the trap is
stored, for inspection by the trap · handler, in a word of the process descriptor.
So-called soft errors are overflow and division by zero. Soft errors which occur either
1..--~··"~ ~ ,..,,.,.,.flnur nf ~ionP.n nr nnsiimed arithmetic mav be ma.~ked off with a ma.~k

29

bit in the process descriptor. The mask bits are checked only when an overflow

occurs. (These overflows are made maskable, since they cannot destroy the code or
change variables).

Two kinds of coroutines exist and should not be confound:

A scheduler switching independent coroutines (processes) has to switch the

complete context including the processor priority. Device drivers also have to
switch the complete context.

The other kind are coroutines used to switch control of execution as part of one
single program (process). A context switch between coroutines which belong to
the same process should not modify the processor priority.

The distinction of the two context switch methods is done by the compiler. The flag
of the TRA instruction denotes the choice of the transfer method:

Calls of TRANSFER from modules with priority are assumed to do scheduling,
the processor priority will be switched.

A call of TRANSFER from a module without priority will not switch the
processor priority.

Note: Implementing interrupts as a coroutine transfer is not self-evident. The PDP-11
interrupt mechanism executes an interrupt without exchanging the coroutine data stack. The
Modula runtime system needs a very tricky method for transforming the interrupt into a
coroutine transfer. [For PDP-11 assembler programmers: In the Modula implementation,
the interrupt vector points to the STACK of the driver coroutine, on top of which is a JSR
R2 xx instruction. On an interrupt, the runtime system (at location xx) gets control. The
stack-pointer points to the interrupted coroutine, R2 points to the interrupt handler.]

Masking interrupts

We consider two distinct concepts for masking interrupts:

The device status: An interrupt from a device is enabled or disabled, because its
handler is loaded or the device is physically present. We use the memory word at
absolute address 3 to denote if interrupts should be accepted.

Priority: The process priority may be changed to postpone interrupts. This is
used when program control enters a critical region. The priority is stored in the
procedure mark.

The priority is set by the compiler, which takes into account module priority; the
device status is handled by the operating system. The operating system is not allowed
to modify the priority field of process descriptors (simply because it does not know
all process descriptors of the user program).

30

The ENfP instruction enters a priority region; it stores the old priority in word 3 of

the procedure mark. EXP resets the priority to its stored value.

However, our hardware knows only one concept for disabling interrupts, a mask

register. The microcode has to map both the priority and the device status into one
hardware priority mask. Whenever the priority is modified, the hardware priority

mask is set to the intersection of the priority and the device status. Modification of

the device status must be done on the highest priority level; access to the device

status should be atomic. Only when the priority. region is lefL does the EXP

instruction force the modified device status to be reconsidered for setting the

hardware priority mask.

The Lilith has priority levels 0 to 15. However, since it is also possible to run without

priority, 17 priorities are to be considered. Traps use priority 7; priorities 8-15 are

used for interrupt lines.
Note: With ENTP the priority is not allowed to decrease; calling a procedure with low
priority from within a procedure with higher priority is considered to be an error. This test
can be used to prevent some procedures from being called from within drivers. It may serve
as a cheap method to force mutual exclusion in some operating system routines.

Interrupts can be masked off by setting priority, but traps cannot. Furthermore,
traps cause a microprogram loop if they are masked out by the device status word.

System initialization

When the reset button is pressed, the microprogram stops the current coroutine,
initializes its process descriptor, and writes a pointer to the process descriptor into a
fixed memory location.
Note: On a cold start of the machine saving a process descriptor results in saving garbage.
However, when the machine was running before the reset, this operation is used to save
execution information, if a dumpfile is produced.

According to the next input from the keyboard, the microprogram saves the whole
memory onto the dumpfile and loads (one of) the bootfiles. At a specific memory
location, the microcode reads a value which is interpreted as a pointer to a process
descriptor. This coroutine is resumed; it is the program loaded at initial boot (e.g.
the operating system). This program is assumed to have masked off all interrupts by
the initial values of the device mask, until it installs the appropriate drivers.

The machine does not completely supports all features ofModula; a few features are
implemented by a runtime system. The compiler assumes a module System to be
linked to the operating system. This module System implements the standard
procedure NEWPROCESS. The behaviour at the end of a coroutine must be
implemented by software; doing it by finnware would require a special check at
"'~'"' nrnf'&)r1nrP rPtnrn tn rP.f'{)(YnhP. thP. P.nn nf ~ r.nrnntinA ThP. mnnnlP. Sv~tP.m is

31

loaded at absolute memory location zero. This is however, not absolutely necessary,
but a convention used inside the module.

See the appendix about Special memory locations.

32

3. Representation of data

3.1. Simple types

Any operation in Modula requires operands of a certain type. There are different
instructions which support all standard types.

Signed and unsigned arithmetic is used to implement the Modula types INTEGER
and CARDINAL; instructions for arithmetic operations on these types imply an
overflow check. The compiler need not generate instructions for the overflow check.
Note: It is possible to disable the traps for INTEGER or CARDINAL overflow by setting
the trap mask in the process descriptor.

The floating·point instructions support the standard type REAL. REAL variables
are stored in 32 bits. The machine further supports double (multi) precision
unsigned arithmetic, but the compiler does not use it Most load or store instructions
exist also in a double word version.

Compare instructions load a Boolean value onto the stack. No condition code register
is used, this simplifies the code generation. This also explains why overflows are
detected implicitly and generate traps. The "short circuit" Boolean AND and OR are
implemented with the ANDJP and ORJP instructions, respectively. These
instructions do not necessarily result in more efficient code; however, they simplify
the code generation considerably.

For pointers or addresses a 16-bit absolute address is used. Access to NIL pointers
must cause a trap. Since the test for NIL should always remain enabled, it is done in
firmware. On every access to an user generated address (e.g pointers), a test is
introduced. Note that doing the tests by fmnware on all candidate instructions
(LSW, LSA, ...),introduces too many tests. However, these tests need no memory at
all, and need no instruction fetch time. We consider this implicit test to be less costly
than having special instructions included in most, but not all, cases.

We further use a reserved value for NIL: the address with the biggest possible value
(for 16-bit addresses: 177777B). The firmware verifies that an address is not equal to
NIL, and it checks further that no cardinal overflow occurs in address calculation.
This overflow detection is mainly important when accessing structured data. To
access a component, an offset is added to the variable address; an illegal NIL address
would be modified and could no more be detected by comparing its value with NIL.
It is further possible for the software to introduce a value nearly-NIL (e.g. 177776B). When
memory is initialized to this value, access of non-initialized pointers to records will cause an
address error trap. Such an initialization test could not be done with a NIL initialization,
since a NIL initialization would hide non-initialized pointers in programs which check
e:tl?licit~ly for NIL values.

33

3 .2. Arrays and other structures

Assume the declaration of an array:

a: ARRAY [m .. n] OFT

The array will be accessed indirectly. A word is allocated in the data stack which
contains a pointer to the actual array variable. We distinguish the three cases where
elements of type T require one, two, or several words. Strings constitute a separate
case and are described in the next section. The following tables show what code is
generated to access arrays:

Single word arrays double word arrays multi word arrays

a[i] (array element occurring within an expression)
load addr of a load addr of a
load i load i
load m load m [suppressed if m = 0]
SUB SUB "
•

LXW

a{i} : =X
load addr of a
load i
loadm
SUB
•

load x
SXW

Compute address of a[i]
load add r of a
load i
loadm
SUB
*

ADD

• [• here the runtime test is inserted]
LXD

load addr of a
load i
loadm
SUB
•
loadx
SXD

load addr of a
loadi
loadm
SUB
•

COPT
ADD

compute address of a[i]
like below.
load address of x
load TSIZE(T)
MOVE

load addr of a·
load I
loadm
SUB
•

load TSIZE(T)
MUL
ADD

For the case where the lower index is 0, the compiler omits the subtraction.
Furthermore, other instruction sequences are optimized whenever possible. For
example, multiplication by the size is replaced by a shift whenever possible. When
constant indices are used, the compiler does part of the address arithmetic at compile
time. Depending on the range type, either signed or unsigned arithmetic has to be
used for the index calculations. The table ignores these differences.

34

The code sequences shown above do not include run time tests. These tests look the
same for all cases in the table. The instruction CHKZ checks for i < = n where i is
the index and n is the number of array elements (-1). The instruction removes n but
leaves i on the expression stack. This instruction allows detection of indices which
are too large; indices which are too small will cause a trap on the preceding
subtraction.
Virtual origins might be used to avoid the subtraction. We preferred not to use that method
because of its complexity. With virtual origins the address arithmetic should be allowed to
legally wrap around. Because memory allocators do not know about usage of allocated areas,
addresses point to the effective start address. If an address is converted to a pointer, a
correction for the virtual origin must be done; etc.
The check and unsigned check (CHK, UCHK) instructions test m < = i < = n and remove m
and n from the stack. If the condition is not satisfied, a trap is initiated. The compiler does
not generate these instructions for array bound checks, since the array bound check
mechanism with the subtraction and the CHKZ instruction is more efficient. However, these
instructions are useful to check assignments to subrange variables.

If an array or a record is a .component of another structure, then it is directly
embedded in that structure, i.e. the structure does not contain a pointer to the
component. The load stack address (LSA) instruction is defined to add the offset of
such a component to the variable address. If the offset is to big to be stored in a byte
the compiler uses regular unsigned arithmetic.

The base address is then computed by using either the load stack address (LSA)
instruction or using regular c~dinal arithmetic.

Strings

Arrays of characters (strings) are stored as packed arrays, two characters per word.
The two cases of loading or storing an element of a character array are compiled with
the instructions LXB and SXB. Because of the packing, it is not possible to get the
address of a character in a string.

When strings are used as parameters, the procedure must get an address. Therefore,
literals must be generated. The compiler reserves an area for such string templates.
Word 2 of the module's data frame is a pointer to that template area. The load string
address (LSTA) instruction is used to load the pointer to that template area and to
add the offset to the corresponding string.
The read string (RDS) instruction is defined to implement string assignment statements.
The compiler does not remember the context when it scans a string constant. It does not
recognize if the string constant occurs as an actual parameter or in an assignment statement.
Therefore, it cannot generate the RDS instruction.

Allocation of memory for structures .

Blocks of storage on the stack are allocated by the instruction ALOC.

The code sequence
load n
ALOC

35

allocates n words on the data stack, and leaves the address of the allocated block on

the expression stack. A test for stack overflow is included; it may induce a trap. A
normal store instruction stores the base address at its proper location in the
procedure segment.

For structured variables of a global module another method must be used.
Allocation must be done at compile time; the loader needs to know the size of the
data frame of the mod-qle. At module initialization time, pointers to all global
structures are computed and stored at their proper locations. This must be done
before any other action is taken, especially before initialization of imported modules.
Thus, on circular imports the data may be not initialized, but the pointers to the
structured variables are.

Still another method is used for allocation of memory for structured value
parameters. The parameter copy instruction (PCOP) does all necessary work. It
allocates the memory area, stores the base address at its proper location in the
procedure frame, and copies the parameter.

3.3. c .ompile-time representation of data

Compiling an expression requires the compiler to keep track of what the nature of
the expression is. For an ideal machine, it could be assumed that all used variables
are loaded on the stack. Because the Lilith machine is not the ideal stack machine, we
use an attribute record in the compiler. Another reason for the compiler to
distinguish between different attribute modes is optimization. However, the
attributes used for the Lilith compiler look simple when compared to those of other
compilers (e.g. PDP Modula, CDC Pascal [Amm]).

The type ArithmeticType is defmed, as being a type which denotes different classes of
machine instructions for doing arithmetic in Modula.

TYPE ArithmeticType = (signed, unSigned, bitwise, floating, logical);

The type AtMode is used to define the way in which an operand is loaded or stored.

TYPE AtMode =
(g!obaiMod, locaiMod,loadedMod, addrLoadedMod, externaiMod,
indexMod, bytelndexMod, doublelndexMod, absolutMod,
constantMod, procedureMod, stringConstMod, doubleConstMod,
stringTemplateMod, illegaiMod};

36

The following table shows which instructions are generated to load a variable for the
different values of AtMode.

AtMode

global Mod:
local Mod:
loaded Mod:
addrloadedMod:
external Mod:
indexMod:
bytelndexMod:
double! ndexMod:
absolutMod:
constant Mod:
procedureMod:
stringConstMod:
doubleConstMod:
stringTemplateMod:
illegal Mod:

corresponding Instruction

LGW, LGD
LLW, LLD
none
LSW
LEW
LXW
LXB
LXD
LIW addr; addr: = 0 --> addrLoadedMod
Ll n, Ll B, LIW
CL, CX respectively LIW for assignments
RDS (not generated by the current implementation}
LID
LSTA addr; addr: =· 0 ··> addrLoadedMod

The attribute ¥t:hich describes an expression appears as follows:

TYPE Attribut =
RECORD
typtr: Stptr;
CASE mode: AtMode OF

globalMod, locaiMod, addrLoadedMod, externalMod,
absolutMod, stringTemplateMod:
addr: CARDINAL; (•for addrLoadedMod this is an additional offset•)
CASE AtMode OF

external Mod: (•only variables, no constants•}
moduleNo: CARDINAL I

locaiMod, addrLoadedMod:
CASE BOOLEAN OF (•used for dynamic array parameters•)
TRUE: dynArrleveiDiff, dynArrOffset: CARDINAL

END
END I

constant Mod:
CASE BOOLEAN OF

TRUE: value: CARDINAL I
FALSE: iValue: INTEGER

ENOl
doubleConstMod:
CASE BOOLEAN OF

TRUE: r1, r2: CARDINAL I
FALSE: r: REAL

ENOl
stringConstMod:
strgPtr: Stringptr I

procedu reMod:

procPtr: ldptr (•for module number use proc?trt.globmod't.modnum•) 1
loadedMod, indexMod, bytelndexMod, doublelndexMod:

END;
END (•Attribut•);

37

This attribute type is much simpler than the attribute types used in either the
PDP-11 compiler or the CDC Pascal compiler. A lengthy part of its declaration is
used for (compile-time) type conversions and dynamic arrays. Its essential parts are

only the type, the mode, an offset (for some modes) and a value (for constants and
module numbers). Introducing module numbers is a consequence of separate
compilation.

To get the module numbers, the compiler uses the following conventions:

variables: there is the explicit field modu/eNo in the corresponding variant of the
attribute.

constants: a copy of the imported constant is made; the import is no longer
visible to the code generation.

string constants: a pointer to the actual value is given; for imported string
constants the current implementation makes a copy.

procedure names (assigned to formal procedures): a pointer to the actual
procedure declaration entry is given; this entry includes the module number.

The attribute variables are mainly used by the following code generation procedures:

PROCEDURE Load(VAR fat: Attribut);
(• Generate code to load the value of fat onto the expression stack •}

PROCEDURE LoadAddr(VAR fat: Attribut};
(• Generate code to load the address of fat onto the expression stack •}

PROCEDURE Store(VAR fat: Attribut);
(• Generate code to store the value from the expression stack onto fat •}

These procedures are well known and are already used in the Pascal compiler of U.
Ammann [Amm], where these procedures handle register assignment. In the Modula
compiler, these procedures have a very regular structure. The procedures consist of
one CASE statement for the various modes. Each case consists of simple actions
only. Below, the structure of the procedure Load is shown. This skeleton discards
checks for expression stack overflow.
Note: Beside the CASE statement for the different modes, the procedure contains an IF
statement to check if the offsets are representable in a byte. However, this is only necessary
because the code generation optimizes access of components of structured types.

PROCEDURE Load(VAR fat: Attribut);
(. Generate code to load the value of fat onto the expression stack •)

BEGIN Assert(SizeType(fat}< = 2};

38

WITH fat DO
CASE mode OF

localMod, globaiMod, externaiMod, addrLoadedMod:
IF addr< = 255 THEN
CASE mode OF

global Mod:
IF SizeType(fat) = 1 THEN EmitPacked(LGW, addr)
ELSE Emit(LGD); Emit(addr) END I

external Mod:
IF SizeType(fat) = 1 THEN Emit(LEW); MarkVarAddr(fat)
ELSE Emit(LED); MarkVarAddr{fat) END I

local Mod:
IF SizeType(fat) = 1 THEN EmitPacked(LLW, addr)
ELSE Emit(LLD); Emit(addr) END I

addrLoadedMod:
IF SizeType(fat) = 1 THEN EmitLSW(addr)
ELSE

IF addr = 0 THEN Emit(LSDO)
ELSE Emit(LSD); Emit(addr) END

END;
END

ELSE LoadAddr(fat); Load(fat}
END I

absolutMod:
Emitll(addr);
IF SizeType{fat) = 1 THEN Emit(LSWn) ELSE Emit(LSDO) END I

constantMod: Emitll(value) I

proced ureMod:
Emit{LIW); LinkageMark;
Emit(procPtrt.globmodp't.modnum); Emit(procPtrt.procnum) I

loadedMod: (• skip •) I

indexMod:
IF SizeType(fat) = 1 THEN Emit(LXW)
ELSE (... size 2 is possible I •)

Emit(UADD); Emit(LSDO)
END I

bytelndexMod: Emit(LXB); Assert(SizeType(fat) = 1) I

doublet ndexMod:

IF SizeType(fat) = 2 THEN Emit(LXD)
ELSE (• size 1 is possible 1 •)

UConstMul(2); Emit(LXW);
END I

doubleConstMod: Emit(LID); Emit2(r1); Emit2(r2)

ELSE (•illegaiMod, stringConstMod, stringTemplateMod•) CompilerError
END;
mode : = loaded Mod

END
END Load;

The two procedures

PROCEDURE PreAssign(VAR fat: Attribut);
PROCEDURE Assign(VAR desAT, expAT: Attribut);

39

are used to compile assignments. The procedure PreAssign prepares an attribute so
that a subsequent value may be loaded and assigned with the procedure Assign. This
preparation is necessary since the attribute for the destination need not be such that
a corresponding store instruction exists. The compiler generates such attributes
when it postpones the code generation in the hope for possible optimizations. E.g. if
the compiler scans record fields, it delays the addition of offsets to an already loaded
address. If the compiler needs to add further offsets, it adds them at compile time
and generates code for an addition only once. This optimization may cause offsets to
be out of the range of existing store instructions. PreAssign checks that either the
offset is in the range of existing store instructions, or it will generate code to add the
offset to the address.

Assign generates the code for the assignment

desAT := expAT.

The many selfwchecking calls of procedures like CompilerError or Assert may be
surprising. Additional modes like illegalMod are introduced and the code generation
itself runs with all runtime checks enabled. The reason for this apprehension stems
from the experimental environment where the machines were developed. Any
hardware error should cause the compiler to trap or to write an error message.
Under no circumstances should an object code file be produced which does not
correspond to the Modula source program. The achieved confidence in the compiler
is much more important than the lost compile speed. The compiler has proved to be

very reliable.

40

The WITH statement

The designator in a WITH statement must be evaluated only once. The compiler

reserves a memory word in the local data segment to store the address resulting from

evaluation of the designator. This word is accessed with the normal instructions for
local data. However, the code generating pass examines, whether reproducing the
address is correct and more efficient than to save it. It uses an attribute variable to
remember the designator (and how to reload it) for use local to the WITH statement.

41

4. Compiling control statements

4.1. Statements with specific high level instructions

To design an instruction set well suited for compiling high-level languages is a real
challenge. The temptation to optim~ze. special features is great The decision of
which language features should be supported by special instructions must be
carefully weighed. Primary candidates for memory (and time) optimizations are

those instructions generated by the compiler. Compiler generated instructions may
occur thousands of times in memory, although the user may never suspect their
generation by the compiler. ·

The three main criteria to include a Modula-oriented instruction were:

Time savings
Memory savings
Simplicity of code generation

By using one single instruction for complex but important language features,
instruction fetch time and memory can be saved. The memory savings are always
worthwhile, even though memory is getting cheaper. In addition to the gains in
memory space, more dense code leads to shorter instruction fetch time. We also felt
that the simplicity of code generation is an important goal.

The literature offers methods to analyze relative occurrence of different instructions.
Instruction pairs occurring most often are candidates for new instructions. We prefer
the simpler solution to look into the compiler; instructions which are generated as
sequences by the compiler, form tuples which occur frequently. Optimizing such
instruction tuples directly eliminates (most of) the needs for additional peephole
optimization.

Our experience is that code-generation may· be simplified through a machine with an
appropriate instruction set. However, defining a new instruction set is much more
work than generating code for a machine with a baroque instruction set. The total
amount of work is not minimized by designing one's own instruction set; however,
the reward are nice structures and nearly optimal code.

Remark: many of the complications are caused by the need of optimizations.

Second remark: it is much more effective to have an instruction set well-suited to
high-level languages, than to have some special instructions.
Special instructions created for the operating system, like for disk access, need not be
optimized with respect to space requirements. They will occur rarely. It is valuable to make
certain operating system instructions fast. The operating system has the right to demand
special functions (with regard to 10).

42

4.1.1. The CASE statement

Most computers have some kind of an indexed jump instruction. We designed our
indexed jump instruction in such a way that it does everything that needs to be done
for executing a Modula CASE statement. The "jump" table is placed after the code
resulting from the statement sequences of the different cases. The compiler simply
generates the code. At the end, the compiler updates the case instruction; it does not
need to move the code.

An explicit enter case (BNTC) instruction is generated at the beginning of the case
statement. The enter case instruction contains an offset which points to the jump
table. If the case expression value is outside the range of the jump table, the enter
case instruction jumps to an ELSE part. Other non-existing case labels cause the
compiler to introduce jump addresses to an ElSE part into the jump table; such an
ELSE part is treated like the other cases. If no explicit ELSE part is provided, a trap
is generated as ELSE part.

The end of the CASE statement is also the end of the jump table. This end address is
pushed onto the (data) stack when the enter case instruction is executed. The exit
case (EXC) instruction pops the address and performs the jump to the end. This
results in a short (1-byte) jump (return) instruction and in a simplification of the
compiler.

The statement

CASEexpOF
c1: s1 I
c2: s21

cn:sn
ELSEse

END

is compiled into the code sequence shown below; the ENTC instruction computes
the end address at runtime: end:= tab+2•(high·low+4), where low is the smallest
case-label value and high the largest.

code(exp)
ENTCtab

c1: code(s1)
EXC

c2: code(s2)
EXC

en: code(sn)
EXC

els: code(se)
EXC

tab: low
high
els
c1
c2

en
end:

43

The difference between the EXC instruction and the method used for EXIT

statements, a jump with its address encoded in the instruction stream, reflects also
the difference between the CASE and LOOP statements. For the LOOP statement,
time savings are considered important. However, CASE statements have several
cases. The saving of code space gets priority over speed optimization. The price of
this memory saving is the additional memory access to put the end address onto the
stack.

4.1.2. The FOR statement

The FOR statement is a typical candidate to require a specially tailored instruction.
Many computers have special instructions to optimize the FORTRAN DO-loop.
These instructions usually serve exactly the FORTRAN language and its compiler;
the instructions are hardly usable for another language. (e.g. the SOB instruction on
the PDP-11 computer [PDP] is not too specific, but it forces the compiler to keep a
dumniy control variable in a register). Our solution might cause the same problems
to implementors of other languages. However, for Modula it is well suited.
The VAX supports the FOR loop with an add compare and branch (ACB) instruction;
However, this instruction does not work properly if arithmetic overflow occurs.

Why use special instructions?

- A FOR loop could also be programmed using IF and WHILE statements, so it
could be compiled into that sequence. The special FOR instructions are surprisingly
complicated. We find, however, that the special FOR instructions are preferrable in
spite of their complexity. The FOR loop is the fastest executed loop on the Lilith
machine, mainly because it needs only a minimal number of instructions to establish
the loop.

- The loop range could include the maximum value of the control variable type.
Should the FOR statement cause arithmetic overflows or should the arithmetic wrap
around the maximal value? Special FOR instructions can solve this problem. This is

particularly severe for small integer ranges.

44

Consider the examples

FOR i : = 2 TO 1 DO s .. END
FOR i : = minint TO maxint DO s END
FORi:= maxint·(n•3)·2 TO maxint-1 BY 3 DO ... END

The first two examples show that a FOR statement can be executed 0 to maximum

range times, a variation of maximum range + 1 executions.

The third example shows a case which should also be handled without overflow.

Once the goals of specific FOR instructions are defined, defining their exact

behaviour causes no further problems. The specific instructions result in simple code

generation. A FORl instruction is placed at the loop entry and a FOR2 instruction

handles the end of the loop.

The statement
FORi:= e1 TO e2 BY c DO statementsequence END;

is compiled into the following sequence of instructions.

load address of i
load e1
load e2
FOR1 direction (0/orup;>Ofordown), b

a: statementsequence
FOR2c, a

b:

If the FORI instruction allows to enter the loop, it moves the three loop parameters

from the expression stack to the data stack. The FOR2 instruction fetches the three
loop parameters from the data stack and, at loop exit, it removes them from the data

stack. The step of the loop is a constant; for efficiency it is not put onto the stack but

into the code sequence.
However, a11owing constant steps only might be a little too restrictive.

The compiler has to know the nesting depth of FOR statements at any point in the

program. If an EXIT statement introduces an additional exit from a FOR loop, the

FOR loop parameters must be removed from the data stack. (The compiler
generates three DECS instructions; no special instruction is defmed, since it occurs
quite rarely).

45

Length of code generation part for the FOR statement in the compiler:

Lilith: 50 lines (26 essential lines;
20 lines for run and compile time error message
4 lines comment)

PDP-11:
Pass4: 1251ines

Pass5: 21 lines

(1 05 essential lines;
10 lines for compile time error messages;
10 lines comment}

(17 essential lines;
4 lines comment)

However, the PDP FOR statement is also implemented for cardinals > maxint, and
no runtime subrange checks are needed.

Run time benchmark: (counting the executions done within the same time interval)

WHILE loop
FOR loop

Lilith PDP-11 I 40 Alto-2 MC68000
334 185 116 275
422 230 172 320

Gain of FOR loop 26% 24% 48% 16%

Lilith takes its gain from the elimination of memory accesses in the computations of

the control variable and in eliminating some execution fetch time.

The PDP-11 can eliminate memory cycles too, by holding more information in the
registers. This results not only in reducing memory requests, but also in reducing
code length by register-addressing mode.

The Alto machine is programmed in Mesa. This language, like Pascal, does not allow
FOR statement steps other then 1 OR -1; a special machine instruction would not
need a specification of the step, the ending value of the FOR statement is always
reached exactly and no wrap around or overflow can occur.

This measurement tells us that the Language designers of Pascal and of Mesa were
wise not to include steps in the FOR statement. This allows faster code for the
simple case while complicated cases must (and can) be hand-programmed with IF
and WHILE statements.

46

4.2. Statements compiled to simple instructions and jump
optimization

In a structured programming language, short-distance jumps occur much more
frequently than long-distance jumps. The code size can be considerably reduced, if
short addresses can be used for short jumps. To accomplish this, a short jump
distance has to lead to a short instruction. This is realized in many computers with a
jump address relative to the program-counter, that is, the jump instructions use
addresses relative to the address of the instruction itself. However, how do we
determine whether or not a short instruction will suffice if the jump's direction is
forward?

Modula has no GOTO statement. All program execution control is expressed by well
structured IF, WHILE, etc. statements.

Given that restriction we know that jumps will only occur as a result of the
compilation of control statements. Since the location of the jump and the destination
of the jump are part of the same statement, we know that we can treat each of them
separately without regard to its context, nor to its components. In addition, using
program counter relative instructions gives us a free hand to move the code of
components up or down in store without change. This allows us to compile nested
statements attractively by the use of recursion.

An unfortunate violation of the well-structured method to generate jumps is the
EXIT statement. Renouncing the use of short jumps for the EXIT still allows usage
of the advantages given from the language structure. EXIT statements occur
significantly rarer than the other control structures which need generation of jumps.
We accept the restriction to keep the algorithm simple and optimize only the
frequent cases.

4.2.1. The REPEAT statement

Implementing an optimal jump instruction for the REPEAT statement is refreshingly
simple. It requires a single, conditional backwards jump. The jump distance is
known when the instruction is emitted. Hence it is known whether a short (2-byte)
or a long (3-byte) instruction is required.

4.2.2. The WHILE statement

The WHILE statement has the following fonn

WHILE exp DO s END

The resulting code is

a: code(exp)

b:

JPCb
code(s)
JMPa

47

We know that short jumps are much more frequent, and therefore leave space for a
short instruction whenever its eventual length is unknown. This means that the
subsequent block of code will have to be moved forward by one location if it later
turns out that a long jump is required. We present the necessary steps in terms of a
top-down compilation routine in familiar style. pc is the global counter for the code;
startPC, jumpOutPC, and forwardOffset are local variables of that routine; N is the
maximal jump distance available to the short version of the jump instruction.

IF sym = "WHILE" THEN GetSymbol;
startPC : = pc; Expression; jumpOutPC : = pc;
Emit(JPFC); Emit(O);
StatementSequence;
forwardOffset: = pc-jumpOutPC + 1;
IF (pc-startPC)>(N-1) THEN (•backjump is long•)

IF forwardOffset>(N-1} THEN
(•two long jumps•)
MoveCode(jumpOutPC +2, pc-1, 1);
lnsert(jumpOutPC, JPC); lnsert2(jumpOutPC + 1, forwardOffset + 2)

ELSE
(•only backjump is long•)
lnsert(jumpOutPC + 1, forwardOffset + 1)

END· I .

Emit(JP); Emit2(startPC-pc)
ELSE (•two short jumps•)

Emit(JPB); Emit(pc-startPC);
lnsert(jumpOutPC + 1, forwardOffset)

END;
GetSymbol

END
Emit2 or Insert2 means to handle 2 bytes.

4.2.3. The IF statement

The IF statement presents a much more formidable case because it generates
forward jumps that "cross" each other. Since in Modula-2 a whole cascade of cases
can be obtained, we record the locations of the incomplete jump instructions in a list
structure.

48

The statement

1Fe1 THEN s1
ELSI F e2 THEN s2

ELSI Fen THEN sn
ELSEs
END

is compiled into the code

code(e1}
JPCc2
code(s1)
JMPex

c2: code(e2)

c3:

JPCc3
code(s2)
JMPex

code{ en)
JPCel
code(sn}
JMPex

el: code(s)
ex:

After the statement is compiled, a pass is made over the generated code in the
reverse direction to determine where short jumps have to be replaced. Only in a
third step is the actual code moved, and the jump addresses inserted.

For a complete reference of this optimization see Appendix 6.

4.2.4. The LOOP and EXIT statements

The LOOP and EXIT statements are quite exceptional. The EXIT causes control to
leave the enclosing LOOP statement The EXIT statement is not syntactically part of
the LOOP statement. The compiler must discover and take into account the
environment of the EXIT statement.

The LOOP statement is much like the REPEAT statement. The jump addresses for
EXIT's, however, are only known after the entire LOOP statement has been
analyzed. We decided not to optimize EXIT statements. All EXIT statements must
be compiled into a forward jump. When EXIT statements are compiled, the address
of the jump instruction is entered in a table which belongs to the innermost LOOP
statement. These tables are handled in the code emitting module; they need
updating whenever the the code is moved.

49

Note: If an EXIT statement jumps out of a FOR loop, it must adjust the top of the data
stack. (The WITH statement cause no problems. If an address is to be remembered, it is
stored in the local data segment and not on top of the stack.)

4.2.5. Keeping track of code moves

Two methods for moves of code by the compiler are used:

Rule for the simple case:

The generating procedure does everything itself; it may move the code, it marks
and updates locations, and it does the neccessary bookkeeping itself whenever it
moves a piece of code. This scheme is used for IF, WHILE etc statements.

More general rule, used for EXIT statements and locations where linker flxups are to
be requested:

The code emitting module keeps track of the move. Both, the marking of
locations and the update is done through calls of emitting procedures. No other
module is involved in the code moving.

mark: to remember the address of a location where later something must be
updated. The recorded address must change when the code is moved.

update: to insert something into a marked location. The address of the location
may have been changed since it had been marked.

The mark and update procedures are implemented in the same module as the code
moving procedure. The code moving procedure keeps track of marked addresses.

Using these two methods, any compiler part may move the code which is generated
by other parts without further respecting their bookkeeping needs. The code
generated by one compiler part may be moved by others without notice.

The following module CodeSys shows the simplified code emitting module

MODULE CodeSys;
(•everything mentioned here is exported •)

VAB pc: INTEGER; {•exported read only•)

PROCEDURE Emit(i: WORD);
PROCEDURE Emit2{i: WORD);

PROCEDURE lnsert{at: CARDINAL; i: WORD);
PROCEDURE lnsert2(at: CARDINAL; 1: WORD);

PROCEDURE MoveCode(from, to, displacement: CARDINAL);
{ • decrements pc if necessary •)

50

PROCEDURE Marklong(VAR lastPc: CARDINAL);
(• insert the program counter in a "table". lastPc must be the (provisional)

program counter of the last mark of the used "table",
or 0 to start a new "table" •)

PROCEDURE UpdateLong(lastPc: CARDINAL);
(• Update "table" of long jumps.

the Marklong, Updatelong pair is used for EXIT statements •}

PROCEDURE LinkageMark;
(* enter pc inthe table of linkage marks; it is updated implicitely •)

END CodeSys

The complete CodeSys module contains some initialization routines and further
pairs of mark and update; however, they all use the same basic principles. In spite
of general information hiding ideas the simple mechanism for track keeping with
cardinals avoids separate list structures. Such a module is only used by a limited
number of code generation clients which can be assumed to be correct.

We will not describe completely the trivial (but verbose) mechanism of how the
marks have to be updated on moves. However, a compile time saving optimization
complicates the algorithm. The optimization relies on:

All moves are forward.

The IF statement leads to sequences of moves with non overlapping areas which
are ordered.

All nonupdated marks are kept internally in an ordered sequence, using the same
order as the nonoverlapping areas of IF statements. Whenever a move is called, the
last move position and the internal position of the mark information is remembered.
On the next move the compiler checks first to see if it can start the search for
addresses and mark information at the remembered position. Most often this is the
case and the search may continue at that position.

4.2.6. The value of the short and long jump optimization

Similar optimizations lead to substantial savings of memory in the Modula compiler
version for PDP-11 machines (10%); however, the savings for the Lilith machine are
only · about 3%. The PDP instructions have a length of 1 or 2 words. The difference
in the Lilith machine is only 2 versus 3 bytes. We feel that an optimization of 3% is
not important in a special program; however, when generated by the compiler, those
3% are important, because every program will gain 3%. This limitation of the

51

optimization had been predicted; the relative number of jump instructions gives an
upper limit to the gains of this optimization.

The other reason this optimization is less valuable on Lilith than on the PDP-11, is
that it competes with other optimizations; for example special instructions for the
FOR or CASE statements.

Short and long jump optimization is frequently mentioned in the literature (e.g.
[Rob]). Most authors present algorithms which perform all possible optimizations;
these algorithms are quite complex. Our algorithm does not consider modification of
instructions in statements which are already scanned. It is based on the fact that
jump addresses are always relative and that for structured statements the location of
the jump and the destination of the jump are part of the same statement.
Note: Jump instructions for EXIT statements and addresses for linker fixups are updated
after the corresponding statement is scanned, but no opcodes need to be modified.

Another often mentioned optjmization is peephole optimization. We prefer optimization at
a time when the program's structure is known. It is not forbidden, however, that a
subsequent peephole optimization can be performed on the output of the compiler.

Counting the long jumps in some actually compiled object programs yields the
following results: ·

The complete. code generation part of the compiler compiles itself with only 2
statements (beside EXIT statements) needing long jump range.
Note: not generating long jumps at all would be an awful restriction. If programmers
were forced to use smaller ·local procedures in non-adequate cases, they would have to
use more intennediate level variables.

The long jumps, which could theoretically be replaced by short ones, but which
our simple algorithm ignores, amount to less than 0.1% loss of memory space in
the code (rare EXIT statements).

The jump optimization needs surprisingly few lines in the compiler: Mainly the code
in Appendix 6, and the code for performing the code moves and the necessary
updates. However, this code leads to a substantial increase of the complexity of the
module interfaces.

Optimizations omitted:

Jump to jump instructions are changed. This could also be done by a peephole
optimization. Such an optimization would speed up the programs, but it would
not save space.

Code which can never be executed is omitted. This is done for IF statements
with constant Boolean expressions; it could be improved to eliminate code after
an EXIT statement. This, of course, could not speed up programs but would
save space. To be fair, eliminating never executed code in IF-statements is not

52

considered an optimization. It allows to include debug statements in the
program without introducing concepts like conditional compiling.

Currently our compiler performs a number of valuable optimizations omiting the
more exotic and difficult ones. Special optimizations which cannot be done in source
level and optimizations which happen to well structured programs are preferred.

4.3. High-level instructions versus simple instructions

Since the whole architecture is defined in view of Modula, we were surprised how
few instructions are introduced to map specific Modula concepts to the machine.
Other instructions are introduced to implement a Modula concept without being
explicitly the result of compiling a specific statement.

Instructions for formal procedures, processes, data allocation, parameter copying,
accessing arrays, and the index tests are well suited for Modula. However, they
would certainly also be useful for any other high-level language. These instructions
do not result in isolated high level features but they are all organically related to each
other and fit into the framework of a consistent architecture. Such instructions are
therefore not described in this chapter but, rather, in the earlier chapter Overall
structure and procedure call.

The FOR statement requires a special control structure of which the jump is only a
minor part. We provide an extra machine instruction that performs the loop index
counting in addition to the jump control logic.

The CASE statement needs a table with the offsets to the variants. At the end of
each case variant, a jump to the end of the CASE statement is needed. The compiler
generates an exit case (EXC) instruction (!·byte) for this jump, saving even more
memory than with optimized jumps. For these specific instructions, no special
versions with byte offsets are defmed.

The other control statements do not request specific instructions. For example,
consider again the statement

WHILE exp DO sEND

which is compiled into

a: code{exp)

b:

JPCb
code{s)
JMPa

53

The jump and jump conditional instructions exactly match the while statement. If
specific instructions were requested, we could call such instructions WlllLEl and
WHILE2, but they would still act as jumps and conditional jumps. We might say that
FOR and CASE are standard constructs of any high-level language. A matter of
opinion.

54

5. The encoding of instructions
A good instruction encoding reduces the memory space required for object
programs. Generating shorter programs not only saves memory, but also results in
less execution time to fetch the instructions. Some mathematical methods allow very
dense coding of the instructions. Such methods are described by C. Foster [FG], J.
Wade [WS], and others. The proposal of A. Tanenbaum [Tan] considers hardware

constraints more fully. He proposes a byte encoding. This encoding is not optimal in
a mathematical sense but is a good compromise which can be built with real

hardware.

The Lilith instruction encoding is similar to the proposal of Tanenbaum. However,
the instruction set is more complete. The number of different formats for
instructions is limited since each variant needs hardware support. Our instruction
fetch hardware delivers the four least significant bits of the instruction byte in a
special register of the micro machine.

In fact •. not all of the 256 different opcodes are necessary instructions. This allows us
to encode the more frequently used instruction sequences into one byte. More
specifically, the most often used constant operands are encoded into the instruction
byte itself. Hence, a complete byte for the operand alone is not needed.

It is very remarkable that on a word addressed machine the instructions start on byte
boundaries. To enable this byte instruction stream, the instruction fetch unit reads
the instructions from a special memory port and not from the usual16 bit memory
port for data.

The code of the Lilith computer has a significantly higher density than the code for
most conventional instruction sets. Compiling Forest Basket's puzzle benchmark
program [Bas] shows that the Lilith has the most dense code, with the exception of
the Mesa [JW] architecture. This is mainly due to the short address fields. Also,
comparisons of longer programs show that on Lilith the code needs less than half as
much memory as the same program on the PDP-11. This measurement was made in
a fair manner. Our PDP-11 Modula compiler generates an excellent code and also
uses short branch instructions. Moreover, the PDP-11 is known as a Pascal friendly
machine.

The following table shows figures about the distribution of instruction length. The
numbers stem from 30000 inspected instructions, the editor, the windowhandler, and
the codegeneration pass of the compiler. The table shows that the encoding is well

done.

1-byte instructions
2-byte instructions

20747 69.3%
6289 21.0%

3-byte instructions
Others
Total

2746
135

29917

9.2%
0.5%

100.0%

55

To really judge the density, the ·instructions with several variations in length must be
compared.

Load immediate
Load and store global
Load and store local
Load and store indirect
Jumps (without FOR, CASE)
Calls
(Total 29917 instructions)

1-byte
3094
1827
6509
2658

473

2-byte
1031
862
161
195

2172
415

3-byte instructions
322

150
1492

The table shows that the short versions of most instructions are preferred. The best
results are the figures for accessing local data. The other lines are also quite
impressive. However, the call instructions do not seem to be optimal. The density of
the instructions could be further improved if a call external instruction with
procedure number encoded in the opcode were introduced. The figures for load
immediate show that small constants occur much more frequently than large ones.
This is especially remarkable since most ASCII values need a two byte instruction.

A similar measurement is made by G. Me. Daniel [Dan]. This paper also allows
comparison of the behavior for different possible encodings of the instructions.

The next table shows which subject the instructions belong to. With it we can see
that local variables are handled more frequently than globals. Stores occur less
frequently than loads. Compare this table to the corresponding table in Lilith: A
Personal Computer for the Software Engineer [Wirl].

%
Load immediate 4560 15.2
Load address 840 2.8
Load 1 ocal 5213 17.4
Load global 2098 7.0
Load indirect 1834 6.1
Load indexed 224 0.7
Load external 601 2.0

Store local 1555 5.2
Store global 591 2.0
Store indirect 1019 3.4
Store indexed 369 1.2
Store external 175 0.6

Operators 1885 6.3
Comparators 1260 4.2

56

Jumps 1953
Short circuit AND/OR 324
FOR/CASE 333
Calls (without returns) 2380
0 t h·e r s (a l o c , r t n • en t r •) 2 7 0 3
Total 29917

6.5
1.1
1.1
8.0
9.0

100.0

It is no surprise that loading local values and load immediate are the most frequent
instructions. It might be a consequence of structured programming that 8% of all
instructions are calls. Some special instructions like the FOR, the CASE and the
short circuit AND/OR do not occur frequently. However, these instructions are
worth beeing defined either because of speed or because they reduce the compiler
complexity. Generally, the complex instructions occur much less frequently than the
simpler ones.

It is sufficient to consider the static distribution of the instructions to determine the
memory needs. However, speed is dependent on the dynamic distribution. We
anticipated that the dynamic distribution of most instructions would be much like the
static and tried to verify this with an appropriate experiment.

The dy~amic instl·uction execution frequency is measured by interpreting the
program. The interpreter counted the instructions. External calls to procedures of
other, not measured, modules were not interpreted but the procedures were really
called. This resulted in statistics on the dynamic occurrence of the instructions in the
measured modules only.
Note. In interactive use, the processor loops in a busy waiting loop for input. Our method
allows to avoid counting those instructions.

This interpreter is too slow to interpret a reasonable sample. G. Me. Daniel uses an
other method to get the dynamic instruction frequency of Mesa programs. He
inserted a counter in the microcode.

Some figures of the dynamic instruction frequency are shown in Appendix 4.

Our dynamic measurements showed enormous differences for similar instructions.
This proved to be a peculiarity of the inspected programs. We were not willing to
concentrate so much on measurements with large program samples, as G. Me. Daniel
and R. Sweet [SS] did. These two papers analyze the Mesa instruction set. The first
paper analyzes the static instruction frequency, the second paper analyzes dynamic
instruction frequencies. It is important to us, that their main conclusions from
analyzing dynamic instruction frequencies show the same importance of short
addressing for the first few local and global variables as ours. The access distribution
of these variables shows no significant difference between the static and the dynamic
measurements.

The Mesa instruction set uses short instructions for the first variables of procedures

51

and modules, as does the Lilith instruction set The Mesa compiler rearranges the
order of the variables so that the most frequently accessed variables get the first
memory locations. The Modula compiler performs no such rearrangements. Our
measurements show that variables, which cannot be addressed with short
instructions. are used rarely. However, if less offsets would lead to the short
instruction format, the value of such a rearrangement is increased.

The good encoding of instructions has further benefits than just measured
quantitative improvements: Because most instructions use one byte only, many more
complex instructions can be omitted. If an operation can be programmed with two
primitive one byte instructions, there is no need for a more complex two byte
instruction executing the same operation.

58

6. Conclusions
Designing an architecture and an instruction set is an intellectual challenge. A
significant portion of the success of the Lilith project is due to the elegance and

simplicity of the chosen architecture.

Specific high-level instructions have been used in object machine architectures for a
long time. In addition to single instructions, the general architecture was designed
explicitly with the compiler and its high·levellanguage in mind. It is important that
the Lilith architecture was designed concurrently with the compiler.

The architecture is defined to support the module structure of Modula. While the
module concept is fundamental for the language, it is equally important to support
modularization by the architecture of the machine. A program's subdivision into
modules does not only introduce the need to access external objects, but introduces a
new concept for globals objects. To be global is no more an absolute property. Each
module has its own global objects, which may be accessed while the module's
procedures are executed.

We defined special instructions which directly support compilation of specific
Modula elements. Some of these instructions just simplify the code generation task.
Other special instructions are tailored to specific constructs of the language (FOR,
CASE); they replace long sequences of other instructions and result in space and
time savings.

Most control statements of Modula are quite simple, they are compiled with jump or
conditional jump instructions. The compiler performs an optimization to use short
address fields for these instructions. The jump optimization algorithm is simple,
because it knows the structure of the Modula statement which required the jumps.

Because of the style of modular programming, data are distributed to several
procedures and modules. Every program unit owns only relatively few data
elements, which can be accessed with small offsets. Encoding small offsets into the
opcode byte of some instructions reduces code length considerably. The largest
space savings of the Lilith instruction set are due to this encoding of the instructions.

The architecture is a compromise; it does not necessarily lead to an ideal compiler. It
tries to find an optimum between fast and short code and a simple compiler
structure. Complications, which do not result in better code. are eliminated; but
whenever better code can be generated, the additional compiler complexity is
accepted.

In general we have chosen a good compromise between generality and optimality for

59

Modula. However, it is also unwise to make too many concessions to the compiler.
We learned a lot about balancing between general and special purpose instructions.

The benchmark test shows that the Lilith is relatively fast. The results are better
than what would be expected when only processor speed is considered. This
improvement is therefore achieved through the quality of the architecture.

Defining the architecture with a Modula program which simulates the Lilith has
proven to be very useful. This Modula program served as an interface between
compiler writer and microcode programmer~ The microcode programmer is not in
the best position to define instructions because he does not see the detailed needs of
the compiler. Sometimes during this project, the microprogrammers did not wait for
a clear definition of the microcode· in the Modula interpreter. This always caused
trouble for the compiler.

The compiler has proved to be very robust. The partitioning of the compiler into
four passes helped to separate code generation from the rest. However, the idea that
the code generation pass should be the only machine dependent pass is only of very
limited value, since addresses must be determined before code can be generated. It

would be overly puristic to introduce an additional pass only to separate these
machine dependent functions from the machine independant ones.
Note: The compiler is not only robust but also very reliable. Since its first internal use
(more than two years ago) only three errors in code generation have been detected.

6.1. What can be done better next time

Global aspects

There are not enough free opcodes. Further extensions could need more additional
instructions than there are free opcodes. Introducing a second map-rom and a
corresponding indexed-jump micro instruction in hardware could allow the
introduction of an escape instruction which executes faster.

Virtual addresses are needed; the current access of the upper memory bank is a
patch. A whole chapter about virtual addresses follows.

The machine is sometimes not interruptable for excessive time intervals (bitmap
instructions).

Disabling traps for arithmetic overflow should be done on a module basis instead of
on a process basis. The current solution is useful for main programs, but system
modules cannot know if they cause traps or not. A possible solution would be to
reserve a bit in a flXed location per module, e.g. in the code frame. On overflow the
module number serves to get the corresponding trap disable bit.

60

Features not demanded by the language Modula are neglected in the instruction set
Bit-operations like a constructor BITSET {n •• m} with n and m being either
expressions or variables cannot be generated easily. Also, instructions for sets of
more than 16 elements are missing. The instructions for multiprecision cardinal
arithmetic are useful to program a package, however, a set of double precision

integer operators would sometimes be useful too.

An exeption mechanism could be included which is more specific than generating
traps. Introduction of an exeption concept to Modula is not yet been prepared. Such
an exeption concept is particularly worthwhile for implementing remote procedure
calls in a transparent way, as proposed by Nelson [Nel]. When an exception is raised,
the machine has to follow backwards the dynamic link chain until a procedure is

found which catches the exception. We propose an exeption mechanism similar to
the one of Mesa [MMS]: The exeption is caught by a construct which is syntactically
bound to the call statement. An alternate solution is to introduce a suffix to the
statement part of the procedure which is executed when an exception occurs. This
alternative is found in the programming language Ada. The Mesa solution reflects
the programmer's intention better. However, the full Mesa signal mechanism is too
general.

Reading the initial bootstrap program from disk by microcode introduces device
dependency into the microcode. Using a read only memory to get an initial loader
could allow more flexibility.

Modula specific instructions

The FOR and CASE instructions are defined for signed arithmetic only. They
should be improved to include unsigned arithmetic, then they would serve better the
needs ofModula. However, they could also be defined in a more general way.

The MOD instruction for signed operands is missing.

Encoding of instructions

The CX instructions should have special opcodes for small procedure numbers. The
measurements have shown that external procedures are called as often as local
procedures, which we did not expect. It is not possible to use opcodes to encode
module numbers. They must all be encoded in the same way i.e. in a byte, since the
loader (or linker) must update them.
~ote: !he Mesa instruction set allows to call an external procedure with a one-byte
mstruct1on, but it needs one more indirection.

IO and Screen-IO instruction opcodes do not need to be encoded in a single byte.

61

Virtual Addresses, a proposal

Memory has proved to be a crucial point on Lilith, as on any computer. On Lilith,
there may be a need for more memory, for more flexibility in using memory, or for
memory management.

The missing flexibility is a severe restriction for system programs. Swapping,
protection, or just increasing memory size are less important considerations.

Since data addresses are absolute it is not possible to move the used storage. This
results in a severe restriction for system modules like the file system or the window
handler: they are not allowed to use dynamic storage. In Medos terminology, a
module may only ask for memory when it belongs to the top level.

Reason for the restriction:

The dynamic storage of the top level (user) program must be returned when the
program terminates. The storage handler should separate dynamic memory
according to the owner programs. The two obvious methods for separation do not
work:

If one big heap for all levels is used, the user programs may cause a fragmentation of
the memory which cannot be cleared later by the system programs.

If several distinct memory segments are used, the heaps are all of fixed size. If a
heap overflows, it cannot be moved into a larger free memory area.

Terminology

Virtual addresses:

Virtual addresses used in programs do not denote physical memory addresses
but. A mapping function exists from virtual to phisical addresses.

Virtual memory:

Parts of the memory may be swapped onto a secondary storage device. The
memory units swapped out are either segments or pages. Pages have a fixed size,
segments are memory parts with a size determined by the running program.
Virtual memory requires virtual addresses.

Typical relation about address space:

Virtual address space>= Virtual memory space>= Physical memory space

Proposal/or Lilith

We consider virtual addresses to be important, but shall not consider the problem of
virtual memory. Neither do we discuss paging and protection mechanisms.

62

Any virtual address implementation on Lilith should consider the module structure.
The frame table with all pointers to data frames and the G-register with the pointer
to the data frame of the current global module suggest the main idea: all memory
mapping functions are done through the frame table. When registers (0, L, P, ..) are
loaded, the mapping is to be already done. The register then points to real memory,
not to virtual memory. This allows to ommit a time consuming memory request for
the mapping function (from virtual to physical addresses) in most cases.

Not less important for this proposal, is to keep the 16-bit words for data and
addresses. The proposal is so designed that only one additional bitslice is used. This
limits real addresses to 20 bits, which we consider enough for a simple personal
computer. This enlarges the (addressable) memory by a factor of16.
If this memory is still too small, it is also possible to use two additional bitslices, but then
please consider also other ideas like 32-bit machines and multiprogramming.

The frame table also serves for memory mapping. Consider the first 256 entries of
the frame table to point to global data frames. The further entries may be used for
heaps and bitmaps etc. A frame pointer points to a continuous area of memory
which has a real address divisible by 16.

We introduce 3 kinds of addresses: virtual addresses, P-relative addresses, and
a-relative addresses. Real addresses do not need to be visible to the program. The
L-register cannot be used as a frame pointer because there are too many procedure
invocations. Also, the alignment condition for frame pointers prevents the use of
frame pointers in the L-register. To allow short (16-bit) addresses in process stacks,
the P-register is used.

The virtual addresses are used for pointers and for parameter passing. Structured
data may be accessed with frame relative (G or P) offsets. Conversion from a
relative address to a virtual address means:

Load the 16-bit relative address (the offset)
Load the (16-bit) index

Two additional registers are used:

The G-register is split into a GI- and a GA-register. Also the P-register is split into a
PI- and a P A -register.

The GI -register contains the module number. It is used for address conversion and
is saved in the procedure marks on external calls. The GA-register contains the
corresponding frame pointer and is used to access G-relative data. Similarly, the
PI-register identifies processes an<;l the FA-register is used to access P-relative data.

The "ru versions of the registers replace the old registers, however they are changed
to be indices to the frame table. The "A" versions of the registers contain the

63

corresponding entries of the frame table, expanded to be 20 bit addresses. The "A"
register versions are transparent to the program.

virtual address

I index I offset I

L

frame table

16

frame pointer

relative address
16

I offset
I
I

20

I register
I
I

is either

I 20

L

16 4

GA l~.--_-.1.-1 __..o I
16 4

PAlL.....-.. _ ___._I __.a I

"Virtual Addresses"

32

I

adder

16
20

: o I I
+

16 I I o I real

I address

I

I
20

adder real
address

16
: o I I

+
20 I I I I

I

I
20

Lis stored in memory as (L-PA) (16 bit)

GA = frametable[GI]

PA = frametable[PI]

real memory

data word

data word

16

T
fr arne
0
s

r
egment

16

64

New LGI and LPI instructions are introduced. These instructions load either the
module number or the index of the current process on the expression stack (the GI
or the PI register respectively).

It is worthwile to use relative addresses. Relative addresses need only one word of
memory, to load a relative address only one memory request is required. Conversion
from relative to virtual addresses is mostly done without memory requests: Most
often an LGI or LPI instruction replaces the access to the frame table.

For storing static and dynamic links, the PA-register is subtracted from the
L-register, yielding a relative address.

The first word of a module's data frame points to the corresponding code frame. It
seems obvious to represent it by a frame table index; for speed reasons we might
replace it by a frame pointer. We think the speed gain is worth the additional
complexity of the loader.

List of modified instructions

LSWO-LSW15 only LSWO-LSW7,
but in virtual, P-relative and G-relative mode

SSWO-SSW15 same
LSW n, LSD n, LSDO all 3 address modes
SSW n, SSD n, SSDO all 3 address modes
LXFW, SXFW, MOVF are no longer needed
LSTA is G-relative
LXB, LXW, LXD all3 address modes
SXB, SXW, SXD all3 address modes
GB, GB1 is P-relative
ALOC is P-relative
TRA uses index in frame table (PI-Register)
LLA virtual and P-relative mode
LGA only virtual mode
LSA relative (P, G is same} and virtual mode
LEA no more needed
TS virtual
PCOP actual parameter address is virtual, local address P-relative
LIN Load immediate NIL (32-bit; offset is 1771778)
LIN1 Load immediate ·1
LGI new
LPI new
DDT, DCH, REPL, BBL T Fonts and Bitmaps are denoted by indices, not frame

pointers. The hardware has some words with offsets O·n not
used, but reserved for the software.
Use 2 byte opcodes (to get free opcodes).

READ, WRITE, DSKR, DSKW, SETIRK use 2 byte opcode (to get free opcodes).
LLW4-LLW15 replace by LLW4-LLW10 (to get opcodes)
SLW4-SLW15 same

65

For efficiency reasons, the most important instructions dealing with G-relative or
P-relative addresses may be defined, but the less frequent instruction may require
explicit conversion from relative addresses to virtual addresses.

Instructions causing storage overflow should be completely cancelled. The
operating system can then enlarge the process stack, repeat the instruction, and
continue execution.

Rationale:

We include the concept of virtual addresses in the processor's design instead of
relegating it to a special memory management unit. This allows reduction of most
accesses to a segment table {the frame table) and also reduces the necessary
hardware components. (This advantage is also realized with the iAPX 286 processor
in its so-called Protected Virtual Address Mode.)

66

Acknowledgements
I wish to thank Prof. N. Wirth for conceiving and guiding the Lilith project and for
supervising this thesis. I thank S. E. Knudsen for his readiness for discussions. He,
L. · Geissmann and A. Gorrengourt participated in the compiler work. A special
thanks to W. Winiger for microprogramming the Lilith architecture as it was defined
by a Modula program and to R. Ohran for building the hardware. I thank F. Ostler
for checking my English formulations; however, for any further errors I myself am
responsible. Finally, I thank Dr. P. Schulthess for accepting to be my co-advisor and
for his careful reading of my manuscripts.

67

References

[Amm]

U. Ammann. Die Entwicklung eines Pascal-compilers nach der Methode des
Strukturierten Programmierens. ETH Dissertation 5456, 1975.

We learned quite a lot from this Pascal compiler.

[Bas]

F. Baskett. Puzzle: an informal compute-bound benchmark. Widely circulated

and run.

This benchmark is used to compare the Lilith with some other computers.

[BS]

Miles A. Barel, John P. Strait. PERQ QCode Reference Manual. Three Rivers

Computer Corporation, Sept 3, 1980.

The PERQ is another son of the Alto computer, the QCode is derived from the
P-code.

[BKMRS]

David W. Best, Charles E. Kress, Nick M. Mykris, Jeffrey D. Russel and William J.
Smith. An Advanced-Architecture CMOS/SOS Microprocessor. IEEE Micro,

Vol 2, No 3. Aug 1982, pl0-26.

This architecture may be compared to Lilith in many aspects.

[Bur]

The operational characteristics of the processors for the Burroughs B 5000.

Burroughs Corporation. Nov. 1961.

The Burroughs computers were well suited for high-level languages a long time
ago.

[Dan]

Gene McDaniel. An Analysis of a Mesa Instruction Set Using Dynamic
Instruction Frequencies. Symposium on Architectural Support/or Prog. Lang. and

Operating Sys. Palo Alto, Mar. 1982, p167-176.

Analyzing dynamic instruction frequencies shows similar results than static
instruction frequencies; Since the occurrences of instructions are parametrized, the
paper contains relevant information for our purposes.

68

[Dij]

E. W. Dijkstra. Recursive Programming. Numerische Mathematik 2, 1960,

p312-318.

This paper introduces the stack mechanism for handling of local data of

procedures; further, it introduces the so called "display".

[Dis]

Walt Disney. Mickey Mouse.

Excellent literature, also different topics beyond computer science.

[FG]

Caxton C. Foster, Robert Gonter. Conditional interpretation of Operation Codes.

IEEE Transactions on computers, C 20, No 1, Jan 1971, pl08-111.

Every instruction has only very few successor instructions. A short encoding is
used which allows only these few successor instructions and an escape instruction to
occur after each instruction.

[Gei]

Leo Geissmann. Implementation of Separate Compilation in the Modula-2
Compiler. Proceedings of the German Chapter of the ACM 11, Teubner, July 1982,

pl5·27.

More information about the compiler.

[HPJ

HP 3000 Computer Systems, General Infonnation Manual. Hewlett Packard, June
1981.

The HP 3000 is a stack machine. It has a hardware implementation for the top
elements of the stack.

[Jac]

Ch. Jacobi. Evaluation of the Lilith architecture in view of compiling Modula
programs. Proceedings of the German Chapter of the ACM 11, Teubner, July 1982,
p67-80.

Subset of this thesis.

(JW]

R. Johnson, J. Wick. An Overview of the Mesa Processor Architecture.
Symposium on Architectural Support for Pro g. Lang. and Operating Sys. Palo Alto,
Mar.1982, p20-29.

Mesa is implemented on the Alto computer. We learned a lot from Mesa.

69

[Kee]

W. M. McKeeman. Peephole optimization. Comm. ACM, Vol 8, No 7, 1965,
p443-444.

A simple optimization idea. However, we do not perform a peephole optimization.

[Le]

Van Kiet Le. The Module: A Tool For Structured Programming. ETH

Dissertation 6153, 1978.

This is about MODULA -1, not Modula-2. Shows distribution of long and short
range jumps.

[MMS]

James G. Mitchell, William Maybury, Richard. E. Sweet. Mesa Language Manual.
Version 5.0. Xerox Palo Alto Research Center, CSL-79-3, April 1979.

Mesa influenced the definition ofModula.

[NAJNJ]

K. V. Nori, U. Ammann, K. Jensen, H. H. Naegeli, Ch. Jacobi. The Pascal-P
Implementation Notes. Pascal- The Language and its Implementation, Edited by

D. W. Barron, John Wiley.

The P-code is another high-level language instruction set. The main goal of the
Pascal-P project is portability, not most efficient execution.

[Nel]

B. J. Nelson. Remote Procedure Call. Xerox Palo Alto Research Center,

CSL-81-9, May 1981.

We use remote procedure calls only as an example to speculate about the necessary
power of an exception mechanism.

[PDP]

PDP 11 Processor Handbook. Digital Equipment Corporation, 1973.

We sometimes compare the code-generation for the PDP-11 and for the Lilith.
The PDP-11 was used to bootstrap the Lilith compiler.

[Rob]

Edward L. Robertson. Code Generation and Storage Allocation for Machines
With Span-Dependent Instructions. ACM Trans. on Programming Languages and

Systems, Vol. 1, No.1, July 1979, p71-83.

Handles short and long jumps. Shows that the problem is hard to solve.

70

[SS]

Richard E. Sweet, James G. Sandman, Jr. Empirical Analysis of the Mesa
Instruction Set. Symposium on Architectural Support for Prog. Lang. and
Operating Sys. Palo Alto, Mar. 1982, p158-166.

They put much more efforts in the measurements than we were able to.

[Tan]

Andrew S. Tanenbaum. Implications of Structured Programming for Machine
Architecture. Comm. ACM, Vo/21, Num 3, March 1978, p237·246.

Excellent paper, independently describes a machine architecture with some ideas
also found on the Lilith architecture. He analyzes a big sample of programs and
proposes an instruction set which leads to dense code.

[TCLSB]

C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, D. R. Boggs. Alto:
A personal computer. Xerox Palo Alto Research Center, July 111979.

The Alto computer may be called the father of the Lilith machine.

[VAX]

VAX Architecture Handbook. Digital Equipment Corporation, 1981.

Successful architecture, it is much more general than our approach; But it contains
too many features for a personal computer.

[Wirl]

Niklaus Wirth. Lilith: A Personal Computer for the Software Engineer.
Proceedings of the 5th international coriference on software engineering {1981) 2-17
and Microcomputer System Design. Lecture Notes in Computer Science 126
Springer, 1982, p349-397.

More general description of the Lilith project. It includes language definition,
operating system overview, compiler and architecture overviews, and a description
of the hardware structure.

[Wir2]

Niklaus Wirth. Programming in Modula-2. Springer,1982.
Language definition.

[Wir3]

Niklaus Wirth. Modula: a language for modular multiprogramming. Software -
Practice and Experience, 7, 1977, p3·35.

Language definition ofMODULA-1.

71

[Wir4]

Niklaus Wirth. The programming language PASCAL. Acta Iriformatica 1, 1971,
p35-63.

Modula gots most of its principles from Pascal.

[Wir5]

Niklaus Wirth. A solution to the problem of compiling short and long jumps.

Internal memo, 1978.

Our short and long jump optimization is based on this memo.

[Wul]

William A. Wulf. Compilers and Computer Architecture. Computer, Vo/14, No
7, July 1981, p41-47.

Excellent paper, comes to different conclusions than we do.

[WS]

James F. Wade, Paul D. Stigall. Instruction design to minimize program size.

Proceedings 2nd Symp. on Comp. Arch, Jan 1975, p41-44.

They find optimal encoding for memory saving, however, this is done with ignoring

hardware costs.

72

Appendix 1: Table of instructions

0 40 100 140 200 240 300 340

0 LIO LLW LGW LSWO LSW READ FORI MOV

1 Lil LLD LGD LSWl LSD WRITE FOR2 CMP

2 LI2 LEW LGW2 LSW2 LSDO DSKR ENTC DDT

3 LI3 LED LGW3 LSW3 LXFvV DSKW EXC REPL

4 LI4 LLW4 LGW4 LSW4 LSTA SETRK TRAP BBLT

5 LIS LLW5 LGW5 LSW5 LXB UCHK CHK DCH

6 LI6 LLW6 LGW6 LSW6 LXW ESC CHKZ UNPK

7 LI7 LLW7 LGW7 LSW7 LXD SYS CHKS PACK

10 LI8 LLW8 LGW8 LSW8 DADD ENTP EQL GB

11 LI9 LLW9 LGW9 LSW9 DSUB EXP NEQ GB1

12 LilO LLWlO LGWlO LSWIO DMUL ULSS LSS ALOC

13 LI11 LLW11 LGW11 LSW11 DDIV ULEQ LEQ ENTR

14 LI12 LLW12 LGW12 LSW12 UGTR GTR RTN

15 LI13 LLW13 LGW13 LSW13 UGEQ GEQ ex
16 LI14 LLW14 LGW14 LSW14 DSHL TRA ABS CI

17 LI15 LLW15 LGW15 LSW15 DSHR RDS NEG CF

20 LIB SLW SGW sswo SSW LODFW OR CL

21 SLD SGD SSWl SSD LODFD XOR CL1

22 LIW SEW SGW2 SSW2 SSDO STORE AND CL2

23 LID SED SGW3 SSW3 SXFW STOFV COM CL3

24 LLA SLW4 SGW4 SSW4 TS STOT IN cu
25 LGA SLW5 sows SSW5 SXB COPT LIN CL5

26 LSA SLW6 SGW6 SSW6 sxw DECS MSK CL6

27 LEA SLW7 SGW7 SSW7 SXD PCOP NOT CL7

30 JPC SLW8 SGW8 SSW8 FADD UADD ADD CL8

31 JP SLW9 SGW9 SSW9 FSUB USUB SUB CL9
32 JPFC SLWlO SGWlO SSWlO FMUL UMUL MUL CL11

33 JPF SLW11 SGW11 SSWll FDIV UDIV DIV CLIO

34 JPBC SLW12 SGW12 SSW12 FCMP UMOD CL12

35 JPB SLW13 SGW13 SSW13 FABS ROR BIT CL13

36 ORJP SLW14 SGW14 SSW14 FNEG SHL NOP CL14

37 ANDJP SLW15 SGW15 SSW15 FFCT SHR MOVF CL15

. !

The undefined opcodes in the instruction set:

21B. 3348: reserved for use by the compiler
2148, 2158: reserv~d for use for arithmetic

2378 second byte >3: reserved for floating arithmetics
2468 second byte 0: reserved for debugging new instructions

73

)0: reserved for supporting special hardware,
extensions

2478 second byte)5: reserved for operating system needs

74

Appendix 2: Special memory locations
The following memory locations are assumed by the hardware (i.e. the

~ micro-program).

0 .. 2
3
4
5

168, 178
208,218
228,238

368,378
408

1777778

reserved; may be fixed locations of a data frame
device mask
P-Register used for initialization
saved value of P-Register on reset (for dumping)
7 free locations (reserved for the operating system)
trap vector
interrupt vector for line 8
interrupt vector for line 9

interrupt vector for line 15
frame address table
usable memory
reserved; NIL points to that location

The first three memory words have no special hardware functions. They are reserved
and may be used if software assigns a data frame to location 0, since the first three
words of a data frame have hardware and compiler dictated purposes. The current
compiler version assumes module System to be loaded on memory location 0.

75

Appendix 3: The M -code interpreter
The following Modula-2 Program is an extension of the Appendix in "Lilith: A

Personal Computer for the Software Engineer" [Wirl].

Its purpose is to document how the actual implementation on the Lilith was made.

The version in "Lilith: A Personal Computer for the Software Engineer" is better

suited for introduction, because the traps and other details there are omitted. Use

this version as a reference what is exactly microprogrammed. (However, here trap

for storage overflows undo the instruction which caused the overflow, on microcoded
versions this is not implemented).

The array stk and code stand for the data and program stores respectively. In the

actual computer they represent the same physical memory. The array indices denote

memory addresses. Access to the code involves the use of the base address F (and an
18-bit wide addition).

The functions low(d), high(d), and pair(a,b) are introduced to denote selection of a

part of a double word and construction of a double word. The functions Dtrunc and
Dfloat denote conversion of floating-point values into double word integers and
vice-versa. All these functions are NOT available in Modula. Also, sets of the fonn
{m .. n} are used, although proper Modula-2 does not allow expressions to be used
within set constructors. "Sets" of the form {i..i-1} are considered as{}.

The detailed specification of I/0 instructions is suppressed. It is considered not to be
part of the general M -code definition, but should be allowed to vary among different
implementations according to the available hardware. This is particularly true for the

instructions DSKR, DSKW, SETRK used for accessing the disk. However, to
achieve portability, different devices should either be programmed identically or
different instructions with different opcodes should be used. The SYS instruction

may be used for future devices.

MODULE Interpreter; (* N. Wirth, Ch. Jacobi Feb. 81 *)
CONST

NILL = 1777778;
devstatadr = 3;
tlc
dft

= 16B;
= 40B;

(•Trap Error Numbers•)
(•------------------•)
end = 0; (•end•)

(•NIL•)
{•devicestatus address•)
(•trap location adr•)
(•frame table adr•)

~--•-f'hl, = 1· t•illP.aal instruction•)

76

(*

*)

VAR

prioChk
storageChk
rangeChk
addrChk
rea 1 Ovfl
cardOvf l
intOvfl

= 2; (•priority error•)
= . 3; (•storage overflow•)
= 4; (•range violation•)
= 5; (•NIL access or invalid address•)
= 6; (•floating point overflow•)
= 7; (•cardinal overflow (maskable)•)
= 8; (•integer overflow (maskable)•)

software assignments:
= 9; (•function return error [software]•)
= 10; (•halt called [software]•)
= 11; (*assertion error [software] •)

funcErr
halt
assertErr

(* global state variables *)
PC: CARDINAL ; (•program counter*)

(•instruction register•)
(•code frame base address•)
(•data frame base address•)
(•stack limit address•)
(•local segment base address•)
(•stack pointer•)

"IR: CARDINAL;
F: CARDINAL;
G: CARDINAL;
H: CARDINAL;
L: CARDINAL;
S: CARDINAL;
P: CARDINAL;
M: BITSET;
MSK : BITSET;
REQ: BOOLEAN;
ReqNo: [8 . . 15];
overflow: BOOLEAN;

{* auxiliary variables;

{•process base address•)
(•software priority mask•)
(•hardware interrupt mask•)
(•interrupt request•)
(•request number•)
(•overfl ow (condition code)•)

used over single instructions only *)
i, j, k, sz, adr, l ow, hi: CARDINAL;
b: BOOLEAN; lm: BITSET;
i1, istep, ihi: INTEGER;
fromea, toea: CARDINAL; (•framepointers, 18 bit•)
sb, db, sbmd, dbmd, fo: CARDINAL; {•display handling•)
x, y: REAL; (*double precision unsigned fixed point•)

stk[O]: ARRAY [0 . . 1777778] OF CARDINAL; (•data store•)

MODULE InstructionFetch;
IMPORT F, PC ;
EXPORT next, next2;

VAR code[O]: ARRAY [0 .. 7777778] OF [0 .. 255];(•2t18 bytes•)
(•code[O] .. code[3777778] shares memory with stk•)

PROCEDURE next(): CARDINAL;
BEGIN

INC{PC); RETURN code[4•F+PC-1]

\
I

END next;

PROCEDURE next2(): CARDINAL; {*get next two code bytes•)
BEGIN

77

INC(PC, 2); RETURN code[4•F+PC-2]•400B + code[4•F+PC-1]
END next2;

END InstructionFetch;

MODULE ExpressionStack;
EXPORT push, pop, Dpush, Dpop, empty, exsz;

CONST exsz = 16;
VAR sp: CARDINAL;

a: ARRAY [O .. exsz-1] OF CARDINAL; (•expression stack•)

PROCEDURE push{w: CARDINAL);
BEGIN a[sp] := w; INC{sp)
END push;

PROCEDURE pop(): CARDINAL;
BEGIN DEC(sp); RETURN(a[sp])
END pop;

PROCEDURE empty():BOOLEAN;
BEGIN RETURN sp=O
END empty;

PROCEDURE Dpush{d: REAL);
BEGIN a[sp] := high(d); INC(sp); a[sp] := low(d); INC(sp)
END Dpush;

PROCEDURE Dpop(): REAL;
BEGIN DEC(sp,2); RETURN pair(a[sp], a[sp+l])
END Dpop;

BEGIN sp := 0;
END ExpressionStack;

PROCEDURE mark{x: CARDINAL; external: BOOLEAN);
VAR i: CARDINAL;

BEGIN i := S;
stk[S] := x; INC(S); (•static link•)
stk[S] := L; INC(S); (•dynamic link•)
IF external THEN (•return address and external flag•)

stk[S] := PC+lOOOOOB ELSE stk[S] := PC
END;
INC(S,2); (•reserved for interrupt mas~•)
L : = ;

78

END mark;

PROCEDURE saveExpStack;
VAR c: CARDINAL;

BEGIN
c := 0; (•expression stack counter*)
WHILE NOT empty() DO

stk[S] := pop(); INC{S); INC{c);
END;
stk[S] := c; INC(S);

END saveExpStack;

PROCEDURE restoreExpStack;
VAR c: CARDINAL;

BEGIN
DEC(S); c := stk[S];
WHILE c>O DO

DEC(c); DEC{S) ; push(stk[S])
END

END restoreExpStack;

PROCEDURE saveRegs;
BEGIN

saveExpStack;
stk[P J : = G; stk[P+1] : = L;
stk[P+2] : = PC; stk[P+3] . - CARDINAL(M);
stk[P+4] : = s; stk[P+5] : = H+24 ;
(* stk[P+6] is reserved for error code •)
(* stk[P+7] is reserved for error trap mask

END saveRegs;

PROCEDURE restoreRegs(changeMask: BOOLEAN);
BEGIN

G := stk[P]; F := stk[G];
L := stk[P+l]; PC := stk[P+2];
IF changeMask THEN

M := BITSET{stk[P+3]);
MSK := M+BITSET(stk[devstatadr])

END;
S := stk[P+4]; H := stk[P+5]-24;
restoreExpStack;

END restoreRegs;

•)

PROCEDURE Transfer(changeMask: BOOLEAN; to. from: CARDINAL);
VAR j : CARDINAL;

BEGIN
j := stk[to]; saveRegs; stk[from] := P;
P : = jt restoreRegs(changeMask):

END Transfer;

!

' I

I
j

l
\
r

(
;

PROCEDURE Trap(n: CARDINAL};
BEGIN

IF (n IN {cardOvfl,intOvfl})
AND (n IN BITSET(stk[P+7])} THEN

(*the trap is masked out•)
(•the expression stack pointer must be correct; the

mask check may be implemented inline, instead here•)
ELSE stk[P+6] := n;

79

IF 7 IN BITSET(stk[devstatadr]) THEN LOOP END (*!*) END;
Transfer(TRUE, tlc, tlc+1);

END;
END Trap;

PROCEDURE Init;
VAR bootflag: CARDINAL;

BEGIN
{* saveRegs; •) stk(5] := P; {•allows debugging•)
(* read a key from keyboard *)
(* depending on the key: dump the memory onto the disk *)
{* read the boot file according to key and set bootflag •)
stk[6] := bootflag;

END !nit;

BEGIN (•main•)
I nit;
P := stk[4]; restoreRegs(TRUE);
LOOP

IF REQ THEN Transfer(TRUE, 2•ReqNo, 2•ReqNo+1) END;
IR :=next();
CASE IR OF

OB .. 17B: (•LIO- LI15 load immediate•) push{IR MOD 16) I

2 0 B : (• L I B 1 o ad i mm e d i ate byte •) p us h (n ext ()) I

21B: (•reserved for future instruction [compiler]•)
Trap(instrChk) I

22B: (•LIW load immediate word•) push(next2())

238: (•LID load immediate double word•)
push(next2{)); push(next2()) I

24B: (•LLA 1 oad local address•) push{L+next())

25B: (•LGA load global address•) push{G+next())

268: (•LSA load stack address•)
push(pop()+next());
IF overflow THEN Trap(addrChk) END I

80

278: {•LEA load external address•)
push{stk[dft+next()]+next()) I

308: {•JPC jump conditional•)
IF pop() = 0 THEN PC := PC + next2{)

ELSE INC(PC. 2)
END I

318: (•JP jump*) PC := PC + next2()

328: (•JPFC jump forward conditional•)
IF pop()=O THEN PC := PC + next() ELSE INC(PC) END I

338: {•JPF jump forward*) PC := PC + next()

348: (•JP8C jump backward conditional•)
IF pop()=O THEN PC := PC - next() ELSE INC(PC)

358: {•JPB jump backward•) PC : = PC - next()

368: (*ORJP short circuit OR *)
IF pop()=O THEN INC(PC)
ELSE push(1); PC := PC+next()
END I

378: (*ANDJP short circuit AND *)
IF pop()=O THEN push{O); PC := PC+next()
ELSE INC(PC)
END I

408: (•LLW load local word•) push(stk[L+next()])

418: (•LLD load local double word•)
i := L+next(); push(stk[i]); push{stk[i+l])

428: (•LEW load external word•)
push(stk[stk[dft+next()]+next()]) I

438: {•LED load external double word *)
i := stk[dft+next{)]+next();
push(stk[i]); push(stk[i+l]) I

448 .. 578: (•LLW4-LLW15•) push(stk(L + (IR MOD 16)])

END

608: (•SLW store local word•) stk[L+next{)] := pop() I

616: (•SLD store local double word*)
i := L+next(); stk[i+1] := pop{); stk[i] := pop()

628: (•SEW store extern a 1 wo rd•)

I

I
J

!
i

\
I

' ____...._
[

stk[stk[dft+next()]+next()] :=pop()

638: (•SED store external double word •)
i := stk[dft+next()]+next();
stk[i+1] :=pop(); stk[i] :=pop{) I

648 .. 778: (•SLW4-SLW16 store local word•)
stk[L+(IR MOD 16)] := pop() I

1008: (•LGW load global word•) push(stk[G+next()])

1018: (•LGD load global double word•)
i := next()+G; push(stk[i]); push{stk[i+l])

1028 .. 1178: (•LGW2 - LGW16 load global word*)
push(stk[G + (IR MOD 16)]) I

1208: (*SGW store global word•) stk[G+next()] := pop()

1218: (*SGD store global double word*)
i := G+next(); stk[i+1] :=pop(); stk[i] :=pop()

1228 .. 1378: (•SGW2 - SGW15 store global word•)
stk[G + (IR MOD 16)] := pop() I

1408: (*LSWO load stack addressed word•)
k :=pop();
IF k=NILL THEN Trap(addrChk)
ELSE push(stk[k])
END I

141B . . 157B: (•LSW1- LSW16 load stack addressed word*)
push(stk[pop()+(IR MOO 16)]);
IF overflow THEN Trap(addrChk) END

1608: (•SSWO store stack-addressed word•)
k : = pop (); j : = pop ();
IF j=NILL THEN Trap(addrChk)
ELSE stk[j] := k
END I

1618 .. 1776: (•SSW1- SSW15 store stack-addressed word•)
k := pop(); i := pop{)+{IR MOD 16);
IF overflow THEN Trap{addrChk)
ELSE stk[i] := k
END I

2008: {•LSW load stack word•)
i := pop()+next{); push{stk[i]);
IF overflow THEN Trap{addrChk) END

81

82

2018: (*LSD load stack double word*)
i := pop()+next(); push(stk[i]); push{stk[i+l]);
IF overflow (* on either addition•) THEN

Trap(addrChk) END I

2028: (*LSDO load stack double word•)
i := pop(); push(stk[i]): push{stk[i+l]):
IF (i=NILL) THEN Trap(addrChk) END I

2038: (*LXFW load indexed frame word•)
k := pop() + pop()•4 (•18 bits•);
push(stk[k]);
IF overf1ow(•18 bits•) THEN Trap(addrChk) END I

2048: (*LSTA load string address *)
push{stk[G+2]+next()) I

2058: (*LX8 load indexed byte•)
i := pop(); j := pop(): k := stk[j + (i DIV 2)];
IF overflow THEN Trap(addrChk)
ELSIF i MOD 2 = 0 THEN push(k DIV 400B)

ELSE push(k MOD 400B)
END I

2068: (*LXW load indexed word*)
i := pop()+pop(); push(stk[i]);
IF overflow THEN Trap(addrChk) END

2078: (*LXD load indexed double word •)
i := 2*pop()+pop();
IF overflow(•any op•) OR (i=NILL) THEN Trap(addrChk)
ELSE push(stk[i]); push(stk[i~1])
END I

2108: (*DADO double precision addition
Subsequent operators for double words denote
unsigned fixed-point double precision arithmetic,
although the program shows REAL operands•)

y := Dpop(); x := Dpop(); Dpush(x+y) I

2118: (•DSUB double precision subtraction•)
y := Dpop(); x := Dpop(); Dpush(x-y)

2128: {•DMUL double precision multiplication•)
j := pop(); i := pop(); (• x := i•j •) Dpush{x) *)

2138: (•DDIV double precision division•)
j := pop(); x := Dpop();
(* k := x DIV j; i := x MOD j *) push{i); push{k)

I
I

I
!
I

I
I
l
I
!

2148, 2158: (•reserved [multiprecision instructions]*)
Trap(instrChk) I

2168: {•DSHL double shift left; [multiplication by 2]•)
x := Dpop(); (* shift x left 1 bit *) Dpush{x) I

2178: {•DSHR double shift right; [division by 2]•)
x := Dpop(); (*shift x right 1 bit •) D~ush(x)

2208: (•SSW store stack word•)
k := pop(); i := pop()+next();
IF overflow THEN Trap(addrChk)
ELSE

stk[i] := k
END I

2218: {*SSD store stack double word•)
k := pop(); j := pop(); i := pop()+next();
IF overflow OR (i=NILL) THEN Trap(addrChk)
ELSE

stk[i] := j; stk[i+1] := k
END I

2228: (•SSDO store stack double word•)
k :=pop(); j :=pop(); i :=pop();
IF i=NILL THEN Trap(addrChk)
ELSE

stk[i] := j; stk[i+l] := k
END I

2238: (•SXFW store indexed frame word•)
i :=pop();
k := pop() + pop()•4; (•18 bits•)
IF overflow(•18 bits•) THEN Trap{addrChk)
ELSE

stk[k] := ;
END I

2248: (•TS test and set•)
i :=pop(); push(stk[i]); stk[i] := 1 I

2258: (•SXB store indxed byte•)
k :=pop(); i :=pop(); j :=pop() + (i DIV 2);
IF overflow THEN Trap(addrChk)

ELSIF i MOD 2 = 0 THEN
stk[j] := k•400B + (stk[j] MOD 400B)

ELSE stk[j] := (stk[j] DIV 4008) • 4008 + k
END I

83

84

226B: (•SXW store indexed word•)
k := pop(); i := pop()+pop{);
IF overflow THEN Trap(addrChk)
ELSE

stk[i] := k
END I

2278: (*SXD store indexed double word•)
k :=pop(); j := pop(); i := 2•pop()+pop();
IF overflow(•any op*) OR (i=NILL) THEN Trap(addrChk)
ELSE

stk[i] := j; stk[i+1] := k
END I

2308: (*FADD floating add*)
y := Dpop(); x := Dpop(); Dpush(x+y);
IF overflow THEN Trap(realOvfl) END I

2318: (*FSUB floating subtract•)
y := Dpop(); x := Dpop(); Dpush(x-y);
IF overflow THEN Trap(realOvfl) END I

2328: (*FMUL floating multiply*)
y := Dpop(); x := Dpop(); Dpush(x•y);
IF overflow THEN Trap(realOvfl) END I

2338: (*FDIV floating divide*)
y := Dpop(); x := Dpop(); Dpush{x/y);
IF overflow (•OR zerodivide•) THEN

Trap(realOvfl) END I

2348: (*FCMP floating compare•)
X := Dpop(); y := Dpop();
IF x > y THEN push(O); push(1)

ELSIF x < y THEN push(1); push(O)
ELSE push(O); push(O)

END I

2358: (•FA8S floating absolute value•) Dpush{ABS(Dpop()))

2368: {•FNEG floating negative•) Dpush(-Dpop())

2378: (•FFCT floating functions•) i := next();
IF i=O THEN Dpush(FLOAT(pop())}

ELSIF i=1 THEN Dpush(DFloat(Dpop()))
ELSIF i=2 THEN push(TRUNC(Dpop()))

(•trap on overflow•)
ELSIF i=3 THEN Dpush(Dtrunc(Dpop(). pop()))
(* . . . * }
ELSE Trap(instrChk)

1.

I
I
I
I

I
I
i
I
I

I
I
!
:

I
I

I
I
I

I

85

END I

2408: (•READ•) i :=pop(); k := pop();
(* stk[i] := input from channel k *) I

2418: (•WRITE•) i :=pop(); k :=pop();
(* output 1 to channel k *) I

2428: (•DSKR disk read•) I

2438: (•.DSKW disk write•) I

2448: (•SETRK set disk track•)

2458: (•UCHK check j <= i <= I< *)
k :=pop(); j :=pop(); i :=pop(); push{i);
IF (i<j) OR (i>k) THEN Trap(rangeChk) END

2468: (•ESC•) (•escape•)
i := next();
IF i=O THEN

(•jump to high micro ram;
used for debugging instructions•}

ELSIF i IN {1 .. 3} THEN (•printer instructions•)
ELSE (* extensions; unknown behavior, eg. boot •)
END I

2478: (•SYS rarely used system functions: dump, boot, ... •)
i := next(};
IF i=O THEN i := pop(} (* boot machine; boot#i•)
ELSIF i=1 THEN (* dump *)
ELSIF i=2 THEN push(P) (* read P register •)
ELSIF i=3 THEN (* set H register *)

i :=pop(); H := i-24; stk[P+5] := i;
ELSIF i=4 THEN push(H+24) (* read H register *)
ELSIF 1=5 THEN

(* i := version code; 13.2 -->1•) push{i)
ELSE Trap(instrChk)
(* further cases reserved for operating system •)
END I

2508: (•ENTP entry priority•)
i :=next();
(* lm := {0 .. i-1}; •)
IF NOT (lm >= M) THEN Trap(prioChk}
ELSE

stk[L+3] := CARDINAL{M);
M : = lm;
MSK ·- BITSET(stk[devstatadr])+M

END I

86

2518: (*EXP exit priority•)
M := 8ITSET(stk[L+3]);
MSK := 8ITSET(stk[devstatadr])+M

2528: (*ULSS*) j :=pop{); i :=pop();
IF i < j THEN push(l) ELSE push{O) END

2538: (*ULEQ*) j :=pop(); i :=pop();
IF i <= j THEN push(1) ELSE push(O) END

2548: (*UGTR*) j :=pop(); i :=pop();
IF i > j THEN push(1) ELSE push{O) END

2558: (*UGEQ*) j :=pop(); i :=pop();
IF i)= j THEN push(1) ELSE push{O) END

2568: (*TRA coroutine transfer•)
Transfer(800LEAN(next()), pop(), pop())

2578: (*RDS read string•) k :=pop(); i :=next();
REPEAT

stk[k] := next2(); INC(k); DEC(i)
UNTIL INTEGER(i) < 0 I

2608: (*LODFW reload expression stack but save function
result value on top *)

i :=pop(); restoreExpStack; push(i)

2618: (*LODFD reload expression stack but save double
word function result value on top *)

i :=pop(); j :=pop(); restoreExpStack;
push(j); push(i) I

2628: (*STORE save expression stack•)
IF S>H-(exsz+l) THEN

PC := PC-1; Trap(storageChk);
ELSE saveExpStack END I

2638: (*STOFV store expression stack to data stack and
put formal procedure variable on top*)

IF S>H-(exsz+1) THEN
PC := PC-1; Trap(storageChk)

ELSE
i :=pop();
saveExpStack; stk[S] := i; INC(S)

END I

2648: (•STOT store (from expression stack) to top of data
stack; used for formal procedure•)

{

I
I
l
I

I
I

i

l

I .

I
I

IF S>=H THEN PC := PC-1; Trap{storageChk)
ELSE

stk[S] := pop{); INC(S)
END I

2658: {•COPT copy element on top of expression stack•)
i := pop(); push(i); push{i) I

2668: (•DECS decrement stackpointer•) DEC(S) I

2678: (•PCOP parameter copy; storage allocation and copy
of value parameter•)

stk[L+next()] := S;
sz :~pop(); k := S+sz;
IF overflow OR (k > H) THEN

PC := PC-2; Push(sz);
Trap(storageChk)

ELSE
adr :=pop();
WHILE sz>O DO

stk[S] := stk[adr]; INC{S); INC(adr); DEC(sz)
END

END I

2708: (*UADD*) j := pop(); i := pop(); push(i+j);
IF overflow THEN Trap(cardOvfl) END I

2718: (•USU8•) j := pop(); i :=pop(); push{i-j);
IF overflow THEN Trap(cardOvfl) END I

2728: (•UMUL•) j :=pop(); i :=pop(); push(i•j);
IF overflow THEN Trap(cardOvfl) END I

2738: (•UDIV•) j := pop(); i := pop(); push(i DIV j);
IF j=O THEN Trap(cardOvfl) END I

2748: (•UMOD•) j :=pop(); i :=pop{); push(i MOD j);
IF j=O THEN Trap(cardOvfl) END I

2758: (•ROR•) i := pop() MOD 16; j := pop();
(* k := j rightrotated by i places •) push{k)

2768: (•SHL•) i := pop() MOD 16; j := pop():
(* k := j left shifted by i places *) push(k)

2778: (•SHR•) i := pop() MOD 16; j :=pop();
(* k := j right shifted by i places•) push(k)

3008: (•FOR1 entry FOR statement •)
IF S>=H THEN PC := PC-1; Trap(storageChk)

87

88

ELSE
i :=next(); (* =0: up; >O: down*)
hi :=pop(); low:= pop(); adr :=pop();
k := PC+next2();
IF ((i=O) AND (INTEGER(low)<=INTEGER{hi))) OR

((i#O) AND (INTEGER(low)>=INTEGER{hi))) THEN
(* enter the FOR loop *)
stk[adr] := low; stk[S] := adr; INC(S);
stk[S] :=hi; INC(S)

ELSE (* don't execute the FOR loop *)
PC : = k

END
END I

3018: (•FOR2 exit FOR statement *)
ihi := INTEGER(stk[S-1]); adr := stk[S-2]:
istep := INTEGER(next());
{•sign extend; range -128 .. +127*)
IF istep>127 THEN istep := istep-256 END;
k : = PC+next2{);
il := INTEGER(stk(adr])+istep;
IF overflow OR ((istep>=O) AND (il>ihi))

OR ((istep<=O) AND (il<ihi))
THEN (* terminate *) DEC(S,2)
ELSE (* continue *) stk[adr] := il; PC := k
END I

3028: (•ENTC enter CASE statement•)
IF S>=H THEN PC := PC-1; Trap(storageChk)
ELSE

PC := PC+next2(); k :=pop();
low:= next2(); hi := next2();
stk[S] := PC+2•{hi-low)+4; INC(S);
IF (INTEGER(k) >= INTEGER(low)) AND

(INTEGER(k) <= INTEGER(hi)) THEN
PC := PC+2•(k-low+l)

END;
PC := PC+next2{)

END I

3038: {•EXC exit CASE statement•)
DEC(S); PC := stk[S] I

3048: (•TRAP *)
i := pop(); Trap(i MOD 16) I

3058: (•CHK check j <= i <= k *)
k :=pop(); j :=pop(); i :=pop(); push{i);
IF (INTEGER(i)<INTEGER(j)) OR

(INTEGER(i)>INTEGER(k)) THEN Trap(rangeChk} END I

I
I
I

I

I
I
I

l
l

3068: {•CHKZ check i <= k •)
k :=pop{); i :=pop{); push{i);
IF i)k THEN Trap{rangeChk) END

3078: {•CHKS check sign bit•)
k :=pop(); push(k);
IF INTEGER{k)<O THEN Trap{rangeChk} END

3108: {•EQL•) j := pop(); i := pop();
IF i = j THEN push{1) ELSE push(O) END

3118: {•NEQ•) j := pop(); 1 :=pop();
IF i # j THEN push{l} ELSE push(O) END

3128: (*LSS•) j :=pop(); i :=pop();
IF INTEGER{i) < INTEGER{j) THEN

push(!) ELSE push(O)
END I

3138: {•LEQ•) j :=pop(}; i :=pop{);
IF INTEGER(i) <= INTEGER(j) THEN

push(1) ELSE push(O)
END I

3148: (•GTR•) j :=pop(); i :=pop{);
IF INTEGER(i) > INTEGER(j) THEN

push(!) ELSE push(O)
END I

3156: (•GEQ•) j := pop(): i := pop():
IF INTEGER(i) >= INTEGER(j) THEN

push{!) ELSE push(O)
END I

3168: (•ABS*) i := pop(); push(ABS(INTEGER(i)));
IF i=lOOOOOB THEN Trap(intOvfl) END I

3178: (•NEG•) i := pop(); push(-INTEGER(i));
IF i=100000B THEN Trap(intOvfl) END I

3206: (•OR•) j := pop(); i := pop();
push(CARDINAL(BITSET(i)+BITSET{j)))

3218: (•XOR•) j := pop(); i := pop();
push(CARDINAL(BITSET(i)/BITSET(j)))

3226: (•AND•) j :=pop(): i :=pop();
push(CARDINAL(8ITSET(i)•8ITSET(j)))

89

90

3238; (•COM*) push(CARDINAL({0 .. 15}/BITSET{pop())))
(* is equal push{-pop()-1) •) I

3248: (•IN•) j :=pop{); i :=pop();
IF i > 15 THEN push(O)

ELSIF i IN BITSET(j) THEN push(1)
ELSE push(O)

END I

3 2 58 : (* L I N 1 o ad i mm e d i ate N I L *) p us h (N I L L) I

3268: (•MSK*) j :=pop(); {* k := CARDINAL({O .. j-1}) •)
push(k) I

3278; (*NOT•) push(CARDINAL({15}/8ITSET{pop())))

3308: (*ADD*) j := pop(); i :=pop();
push(CARDINAL(INTEGER(i) + INTEGER(j)));
IF overflow THEN Trap(intOvfl) END I

3318: (•SUB•) j :~ pop{}; i :=pop();
push(CARDINAL{INTEGER{i) - INTEGER(j)));
IF overflow THEN Trap(intOvfl) END I

3 3 2 B : (* MU L *) j : = pop () ; i : = pop () ;
push(CARDINAL(INTEGER(i) * INTEGER{j)));
IF overflow THEN Trap(intOvfl} END I

3338: (•DIV•) j :=pop(); i :=pop();
push(CARDINAL(INTEGER(i) DIV INTEGER(j)));
IF (j=O) OR ((j=177777B) AND (i=100000B}) THEN

Trap(intOvfl)
END I

3348: (*reserved for future instruction [compiler]•)
(* e.g. (•MOD•) j :=pop(); i :=pop();

push(CARDINAL(INTEGER(i) MOD ·JNTEGER(j)))
*)
Trap(instrChk) I

3358: (•BIT•) j := pop(): (* k := {j MOD 16} •) push{k) I

3368: (*NOP•)

3378: (•MOVF move frame •)
; := pop();
fromea :~ pop()+pop()•4; (•18 bits•)
toea := pop()+pop()•4: (•18 bits•)
IF overflow(•18 bits•) THEN Trap(addrChk}
ELSE

WHILE i>O DO
stk[toea] := stk[fromea];
INC(toea); INC{fromea); DEC(i)

END
END I

3408: (*MDV move block*)
k := pop(); j := pop(); i := pop{);
IF (j=NILL) OR overflow(•on i+k•) THEN

Trap(addrChk) (*source may wrap around•)
ELSE

WHILE k>O DO
stk[i] := stk[j]: INC(i); INC{j); DEC(k)

END
END I

3418: (•CMP compare blocks*)
k := pop(); j := pop(): i := pop():
IF overflow (* on computing j+k or i+k•) THEN

Trap(addrChk)
ELSIF k=O THEN push(O); push(O)
ELSE

WHILE{stk[i] = stk[j]) AND (k } 0) DO
INC(i); INC(j); DEC(k)

END;
push{stk[i]); push(stk[j])

END I

3428: (•DDT display dot•)
k :=pop(); j :=pop(); dbmd :=pop(); i :=pop()
(* display point at <j.k> in mode i inside

bitmap dbmd;
may cause a Trap(addrChk) •)

3438: (•REPL replicate pattern *)
db:= pop(): sb :=pop(); dbmd :=pop(); i :=pop()
(* replicate pattern sb over block db inside

bitmap dbmd in mode i;
may cause a Trap(addrChk) •)

3448: (•88LT bit block transfer•)
sbmd :=pop(); db :=pop(): sb :=pop():
dbmd :=pop(); i :=pop()
(* transfer block sb in bitmap sbmd to block db

inside bitmap dbmd in mode i;
may cause a Trap(addrChk) *) I

3458: {*DCH display character•)
j := pop{); db :=pop(); fo :=pop(); dbmd :=pop()
(* copy bit pattern for character j from font fo

91

92

to block db inside bitmap dbmd; update block db;
may cause a Trap(addrChk) *) I

3468: (•UNPK unpack•} k :=pop(); j :=pop(); i :=pop();
(•extract bits i .. j from k. then right adjust*)
push{k) I

3478: (•PACK pack•)
k :=pop{); j :=pop(); i :=pop{); adr :=pop();
(•pack the rightmost j-i+t bits of k into positions

i .. j of word stk(adr] *) I

3508: (•G8 get base adr n levels down•)
; := L; j :=next();
REPEAT

i := stk[i]; DEC(j)
UNTIL j=O;
push(i) I

3518: (*G81 get base adr 1 level down•) push(stk[L]) I

3528: (•ALLOC allocate block•)
i :=pop(); push(S); S := S + i;
IF overflow OR (S > H) THEN

S :=pop(); Push(i); PC := PC-1;
Trap{storageChk)

END I

3538: (•ENTR enter procedure•)
i :=next(); S := S + i;
IF overflow OR (S > H) THEN

S := S- i; PC := PC-2; Trap(storageChk)
END I

3548: (•RTN return from procedure•)
S := L; L := stk[S+1]; i := stk[S+2];
IF i < 1000008 THEN (•local•) PC := i
ELSE (* external •)

G := stk[S]; F := stk[G];
PC := i - 1000008

END I

3558: (•CX call external procedure•)
j :=next(); i :=next(); mark(G. TRUE);
G := stk[dft+j]; F := stk[G];
PC:= 2•i; PC:= next2{) I

3568: {•CI call procedure at intermediate level•)
i :=next(); mark(pop(). FALSE);
PC := 2•i; PC := next2() I

\
l

\
I

3578 : (*CF call formal procedure*)
k := stk[S-1]; mark(G, TRUE);
j : = k DIV 4008;
G := stk[dft+j]; F : = stk[GJ;
PC : o 2•(k MOO 4008); PC := next2()

3608: (•CL call local procedure*)
i := next() ; mark(L, FALSE);
PC := 2•i; PC := next2() I

3618 . . 3778: (•CLl- CL15 call local procedure*)
mark(L, FALSE);
PC := 2•(IR MOD 16) ; PC := next2(}

ELSE Trap(instrChk)
END

END (• LOOP•)
END In t erpreter .

93

94

Appendix 4: Distribution of instructions
The following table shows the static distribution of instructions of a big sample. The

____ binary code of the editor, the windowhandler and the code generation pass of the
compiler have been concatenated and analyzed. A program used to check the
compiler output has been modified to count the instructions and to write a table.
Finally, this table was analyzed with a statistics program to get the figures in this

thesis.

LIO 815 2.7 LGW 643 2.1 LSW 149 0.5 FORt 50 0.2
LI1 884 3.0 LGD 0 0.0 LSD 0 0.0 FOR2 50 0.2
LI2 198 0.7 LGW2 212 0.7 LSDO 0 0.0 ENTC 35 0.1
LI3 87 0.3 LGW3 176 0.6 LXFW 13 0.0 EXC 198 0.7
LI4 239 0.8 LGW4 116 0.4 LSTA 8 0.0 TRAP 121 0.4
LI5 165 0.6 LGW5 89 0.3 LXB 92 0.3 CHK 0 0.0
LI6 78 0.3 LGW6 102 0.3 LXW 131 0.4 CHKZ 405 1.4
LI7 56 0.2 LGW7 116 0.4 LXD 1 0.0 CHKS 74 0.2

LIB 44 0.1 LGWB 143 0.5 DADO 0 0.0 EQL 615 2.1
LI9 162 0.5 LGW9 63 0.2 DSUB 0 0.0 NEQ 204 0.7
LI10 71 0.2 LGW1 110 0.4 DMUL 0 0.0 LSS 12 0.0
LI11 32 0.1 LGW11 119 0.4 DDIV 0 0.0 LEQ 6 0.0
LI12 29 0.1 LGW12 74 0.2 0 0.0 GTR 12 0.0
LI13 23 0.1 LGW13 34 0.1 0 0.0 GEQ 6 0.0
LI14 30 0.1 LGW14 37 0.1 DSHL 0 0.0 ABS 2 0.0
LI15 83 0.3 LGW15 64 0.2 DSHR 0 0.0 NEG 9 0.0

LIB 1031 3.4 SGW 219 0.7 SSW 46 0.2 OR 16 0.1
0 0.0 SGD 0 0.0 SSD 0 0.0 XOR 0 0.0

LIW 322 1.1 SGW2 93 0.3 SSDO 0 0.0 AND 53 0.2
LID 0 0.0 SGW3 48 0.2 SXFW 3 0.0 COM 4 0.0
LLA 194 0.6 SGW4 37 0.1 TS 25 0.1 IN 34 0.1
LGA 160 0.5 SGW5 34 0.1 SXB 88 0.3 LIN 211 0.7
LSA 472 1.6 SGW6 29 0.1 SXW 38 0.1 MSK 0 0.0
LEA 6 0.0 SGW7 26 0.1 SXD 1 0.0 NOT 63 0.2

JPC 41 0.1 SGWB 20 0.1 FADD 0 0.0 ADD 24 0.1
JP 109 0.4 SGW9 14 0.0 FSUB 0 0.0 SUB 42 0.1
JPFC 1161 3.9 SGW10 14 0.0 FMUL 0 0.0 MUL 0 0.0
JPF 458 1.5 SGW11 8 0.0 FDIV 0 0.0 DIV 3 0.0
JPBC 43 0.1 SGW12 11 0.0 FCMP 0 0.0 0 0.0
JPB 141 0.5 SGW13 14 0.0 FABS 0 0.0 BIT 19 0.1
ORJP 119 0.4 SGW14 9 0.0 FNEG 0 0.0 NOP 250 0.8
ANDJP 205 0.7 SGW15 15 0.1 FFCT 0 0.0 MOVF 4 0.0

LLW 116 0.4 LSWO 625 2.1 READ 7 0.0 MOV 67 0.2
LLD 34 0.1 LSWl 224 0.7 WRITE 6 0.0 CMP 0 0.0

95

LEW 601 2.0 LSW2 242 0.8 DSKR 0 0.0 DDT 2 0.0
LED 0 0.0 LSW3 189 0.6 DSKW 0 0.0 REPL 6 0.0
LLW4 1399 4.7 LSW4 84 0.3 SETRK 0 0.0 BBLT 5 0.0
LLW5 935 3.1 LSW5 65 0.2 UCHK 2 0.0 DCH 4 0.0
LLW6 929 3.1 LSW6 90 0.3 ESC 0 0.0 UNPK 0 0.0
LLW7 631 2.1 LSW7 19 0.1 SYS 2 0 . 0 PACK 2. 0.0

LLW8 396 1.3 LSW8 40 0.1 ENTP 3 0.0 GB 13 0.0
LLW9 300 1.0 LSW9 17 0.1 EXP 3 0.0 GB1 81 0.3
LLW10 164 0. 5 LSW10 16 0.1 ULSS 111 0.4 ALOC 89 0.3
LLW11 117 0.4 LSW11 17 0 . 1 ULEQ 96 0.3 ENTR 501 1.7
LLW12 82 0.3 LSW12 20 0.1 UGTR 155 0.5 RTN 642 2.1
LLW13 31 0. 1 LSW13 5 0.0 UGEQ 43 0.1 ex 1492 5.0
LLW14 50 0.2 LSW14 23 0.1 TRA 0 0.0 CI 9 0.0
LLW15 29 0.1 LSW15 9 0.0 RDS 0 0.0 CF 33 0.1

SLW 45 0.2 sswo 389 1.3 LODFW 87 0.3 CL 406 1.4
SLD 64 0.2 SSW1 182 0.6 LODFD 0 0.0 Cll 115 0.4
SEW 175 0 . 6 SSW2 122 0.4 STORE 87 0.3 CL2 31 0.1
SED 0 0. 0 SSW3 95 0.3 STOFV 0 0.0 CL3 21 0.1
SLW4 395 1.3 SSW4 38 0.1 STOT 72 0.2 CL4 22 0.1
SLW5 293 1.0 SSW5 20 0.1 COPT 244 0. 8 CL5 34 0.1
SLW6 273 0.9 SSW6 19 0.1 DECS 78 0.3 CL6 45 0.2
SLW7 167• 0.6 SSW7 19 0.1 PCOP 47 0.2 CL7 28 0.1

SLW8 127 0.4 ssw8 17 0.1 UADD 786 2.6 CL8 13 0 . 0
SLW9 78 0.3 SSW9 11 0.0 USUB 502 1.7 CL9 16 0 . 1
SLW10 45 0.2 SSW10 11 0.0 UMUL 114 0.4 CL10 22 0.1
SLW11 29 0.1 SSW11 18 0.1 UDIV 30 0.1 CL11 35 0 . 1
SLW12 17 0.1 SSW12 14 0.0 UMOD 14 0.0 CL12 11 0.0
SLW13 5 0.0 SSW13 9 0.0 ROR 1 0.0 CL13 17 0.1
SLW14 12 0 . 0 SSW14 5 0.0 SHL 87 0.3 CL14 16 0.1
SLW15 5 0.0 SSW15 4 0.0 SHR 82 0.3 CL15 14 0 . 0

The first row, a), of the following table shows the same data as in the preceding table
grouped according instruction classes. It is the big sample and it corresponds also the
figures found in the chapter, The encoding of the instructions. Rows b) and c) show
the instruction frequency of Forest Basket's puzzle benchmark [Bas], also found in an
apendix of this paper. Row b) is the static, whereas row c) is the dynamic instruction
frequency of the benchmark. These two rows show mainly the pecularities of the
program; the sample is too small.

a) % b) % c) %
Load immediate 4560 15.2 222 28.5 134297 2. . 4
Load address 840 2.8 63 8.1 23516 0.4
Load 1 ocal 5213 17.4 34 4.4 1809652 32.0
Load global 2098 7.0 114 14.6 2.21038 3 . 9
Load indirect 1834 6.1 2. 0.3 3992 0.1
I n~ rl inctexed 2.2.4 0.7 12. 1.5 910397 16.1

96

Load external 601 2.0 0 0.0 0 0.0

Store local 1555 5.2 11 1.4 62002 1.1
Store global 591 2.0 11 1.4 2014 0.0
Store indirect 1019 3.4 32 4.1 4022 0.1
Store indexed 369 1.2 7 0.9 3997 0.1
Store external 175 0.6 0 0.0 0 0.0

Operators 1885 6.3 90 11.5 161594 2.9
Comparators 1260 4.2 2 0.3 27905 0.5
Jumps 1953 6.5 13 1.7 826273 14.6
Short circuit AND/OR 324 1.1 2 0.3 540906 9.6
FOR/CASE 333 1.1 100 12.8 824530 14.6
Calls (without returns) 2380 8.0 28 3.6 21433 0.4
Others (aloe, rtn, ent,.)2703 9.0 37 4.7 73512 1.3 q

Total 29917 100.0 780 100.0 5651080 100.0

97

Appendix 5: Benchmark Tests
We will not introduce new benchmark programs. Using existing benchmark

oro grams allows comparison with other computers for which data is available.

Forest Basket's Puzzle benchmark
Time Bytes lnst. Machine language comments

2.3 4882 644 8·1 Pascal
3.0 1214 955 Dorado Mesa
3.5 2080 293 VAX 11/780 c pointers, not subscripts
4.4 DEC2060 Pascal pointers, not subscripts
5.4 3829 851 DEC2060 Pascal
6.8 4630 1029 DEC2060 Pascal with checking
7.5 4744 1052 IBM 158 Pascal
8.9 2500 648 MC68000 c pointers, not subscripts
9.0 2130 VAX 11/780 c

13 2500 DEC 11/34 c pointers, not subscripts
26 1214 955 Dolphin Mesa
26.5 2500 646 MC68000 c
28.5 PERQ Pascal with checking
38 4744 1052 IBM4331 Pascal
42 3829 851 MAXC1 Pascal
42 4630 1029 MAXC1 Pascal with checking
50 1214 955 Alto I Mesa
53 1214 955 Alto II Mesa

16 1369 851 Lilith Modula with checking
14 1259 779 Lilith Modula no checking
10 1259 779 lilith(1982) Modula no checking
25 2794 PDP-11 I 40{EIS) Modula no checking

The modula compiler does not recognize nor optimize FOR statements like
FOR i := 0 TO 0 DO ... END

which are executed only once.

We have introduced a WITH-statement which does not change the algorithm, but

influences the generated code. We did not touch the lengthy initializations.

The time used is measured with a stop watch because the system clock on Lilith may

be inexact.

98

MODULE Puzzle; (* Forest Basket's Puzzle benchmark *)
(* translated to Modula-2 *)

FROM OutTerminal IMPORT Writeln, WriteC;
FROM Terminal IMPORT WriteString;

CONST
d
size
classMax
type Max

TYPE
PieceClass
PieceType
Position

VAR
pieceCount:
class:
pieceMax:
puzzle:
p :

m, n:
i 1 j 1 k:
kount:

=
=
=

=

=
=
=

8;
d•d•d-1;
3;
12;

[O .. classMax];
[O .. typeMax];
[0 .. size];

ARRAY PieceClass OF [0 .. 13];
ARRAY PieceType OF PieceClass;
ARRAY PieceType OF Position;
ARRAY Position OF BOOLEAN;
ARRAY PieceType OF

RECORD r: ARRAY Position OF BOOLEAN
END;

Position;
[0 .. 13];
CARDINAL;

PROCEDURE Fit(i: PieceType; j: Position): BOOLEAN;
VAR k: Position;

BEGIN
WITH p[i] DO

FOR k := 0 TO pieceMax[i] DO
IF r[k] AND puzzle[j+k] THEN

RETURN FALSE
END;

END
END;
RETURN TRUE

END Fit;

PROCEDURE Place(i: PieceType; j: Position): Position;
VAR k: Position;

BEGIN
WITH p[i] DO

FOR k := 0 TO pieceMax[i] DO
IF r[k] THEN puzzle[j+k] := TRUE END

END;
END;
DEC(pieceCount[class[i]]);

FOR k := j TO size DO
IF NOT puzzle[k] THEN RETURN k END

END;
WriteString("puzzle filled"); Writeln;
RETURN 0

END Place;

PROCEDURE Remove(i: PieceType; j: Position);
VAR k: Position;

BEGIN
WITH p[i] DO

FOR k := 0 TO pieceMax[i] DO
IF r[k] THEN puzzle[j+k] := FALSE END;

END
END;
INC(pieceCount[class[i]]);

END Remove;

PROCEDURE Trial(j: Position): BOOLEAN;
VAR i: PieceType;

k: Position;
BEGIN

FOR i := 0 TO typeMax DO
IF (pieceCount[class[i]] <> 0) THEN

IF Fit(i. j) THEN
k : = Place(i. j);
IF Trial(k) OR (k = 0) THEN

WriteString("piece"); WriteC(i+l. 0);
WriteString{" at"); WriteC(k+t. 0); WriteLn;
INC(kount);
RETURN TRUE

ELSE Remove(i. j)
END

END
END

END;
INC(kount);
RETURN FALSE

END Trial;

BEGIN
WriteString("time"); WriteLn;
FOR m := 0 TO size DO puzzle[m] : = TRUE END;
FOR i := 1 TO 5 DO

FOR j := 1 TO 5 DO
FOR k := 1 TO 5 DO puzzle[i+d•(j+d•k)] := FALSE END

END
END;
FOR i := 0 TO typeMax DO

FOR m := 0 TO size DO p[i].r[m] := FALSE END

99

100

EtJD;

FOR i := 0 TO 3 DO
FOR j := 0 TO 1 DO

FOR k := 0 TO 0 DO p[OJ.r[i+d•(j+d•k)] := TRUE END
Etm

END;
class[O] := 0;
pieceMax[O] := 3+d•1+d•d•O;

FOR i := 0 TO 1 DO
FOR j := 0 TO 0 DO

FOR k := 0 TO 3 DO p[l].r[i+d•(j+d•k)] := TRUE END
END

END;
class[1] := 0;
pieceMax[l] := 1+d•O+d•d•3;

FOR i := 0 TO 0 DO
FOR j := 0 TO 3 DO

FOR k := 0 TO 1 DO p(2].r[i+d•(j+d•k)J := TRUE END
END

END;
class[2] := 0:
pieceMax[2] := O+d•3+d•d•1;

FOR i : = 0 TO 1 DO
FOR j := 0 TO 3 DO

FOR k ;= 0 TO 0 DO p[3].r[i+d•(j+d•k)] := TRUE END
END

END;
class[3] := 0;
pieceMax[3] := 1+d•3+d•d•O;

FOR i := 0 TO 3 DO
FOR j := 0 TO 0 DO

FOR k := 0 TO 1 DO p[4].r[i+d•(j+d•k)] := TRUE END
END

END;
class[4] := 0;
pieceMax[4] := 3+d•O+d•d•1;

FOR i := 0 TO 0 DO
FOR j := 0 TO 1 DO

FOR k := 0 TO 3 DO p[5].r[i+d•(j+d•k)J := TRUE END
END

END;
class[5] := 0;
pieceMax[5] := O+d•1+d•d•3;

FOR i := 0 TO 2 DO
FOR j := 0 TO 0 DO

FOR k := 0 TO 0 DO p[6].r[i+d•(j+d•k)] := TRUE END
END

ENDi
class[6] := 1;
pieceMax[6] := 2+d•O+d•d•O;

FOR i := 0 TO 0 DO
FOR j := 0 TO 2 DO

FOR k := 0 TO 0 DO p[7J.r[i+d•(j+d•k)] := TRUE END
END

END;
class[7] := 1;
pieceMax[7] := O+d•2+d•d•O;

FOR i := 0 TO 0 DO
FOR j := 0 TO 0 DO

FOR k := 0 TO 2 DO p[8].r[i+d•{j+d•k)] := TRUE END
END

END;
class[8] := 1;
pieceMax[B] := O+d•O+d•d•2;

FOR i := 0 TO 1 DO
FOR j := 0 TO 1 DO

FOR k := 0 TO 0 DO p[9].r[i+d•{j+d•k)J := TRUE END
END

END;
class[9] := 2;
pieceMax[9] := 1+d•1+d•d•O;

FOR i := 0 TO 1 DO
FOR j := 0 TO 0 DO

FOR k := 0 TO 1 DO p[lO].r[i+d•(j+d•k)] := TRUE END
END

END;
class[10] := 2;
pieceMax[10] := 1+d•O+d•d•1;

FOR i := 0 TO 0 DO
FOR j := 0 TO 1 DO

FOR k := 0 TO 1 DO p[11].r[i+d•(j+d•k)] := TRUE END
END

END;
class[11] := 2;
pieceMax[11] := O+d•1+d•d•1;

FOR i := 0 TO 1 DO
FOR j := 0 TO 1 DO

101

102

FOR k := 0 TO 1 DO p[12].r[i+d•(j+d•k)J := TRUE END
END

END;
class[12] := 3;
pieceMax[12] := l+d•1+d•d•1;

pieceCount[O] := 13;
pieceCount[1] := 3;
pieceCount[2] := 1;
pieceCount[3] := 1;
m := l+d*(1+d•l);
kount := 0;
IF Fit(O, m) THEN n := Place(O, m)
ELSE WriteString("error 1"); Writeln END;
IF Trial(n) THEN

WriteString("success in"); WriteC(kount,O);
WriteString(" trials"); Writeln;

ELSE
WriteString("failure"); Writeln;

END;
WriteString("time"); WriteLn;

END Puzzle.

103

A benchmark test for Modula implementations

This is the Program found in the Appendix of [Wirl]. We added some more
machines in the table. The benchmark just executes some instructions in a loop. The
test figures denote how many times the loop is repeated in one minute.

The PERQ data was obtained indirectly. On some machines the speed of such small
loops may depend on alignment conditions of the code.

Bare speed (loop executions in one minute)

facility LilithPDPll/40 Alto 2 MC68000 VAX 111750 PERQ Lilith
{EIS) 8 MHz com pat. faster

a empty REPEAT loop 321 184 280 267 309 422
b empty WHILE loop 334 185 116 275 262 308 419
c empty FOR loop 422 230 172 320 341 254 528
d CARDINAL arithmetic 187 84 54 107 116 124 218
e REAL arithmetic 130 4 144
f sin, exp, In, sqrt 87 99
g array access 109 54 32 76 81 106 136
h same with bound test 89 11 26 61 19 71 111
i matrix acces 197 93 44 128 135 158 249
j same with bound test 164 21 36 108 36 130 198
k call of empty procedure144 37 40 128 53 93 187
I with 4 parameters 94 29 32 79 41 69 123
m copying arrays 63 11 56 53 11 110 96
n access via pointers 125 66 54 97 50 162
o reading a disk stream 80 36 94

We do not know why on the PERQ the c) test is slower than the b) test. On Lilith the
a) test is slower than the b) test, probably because of alignments of the code. We did
not expend any effort to tune the tests.

For checking pure hardware speed the puzzle test is better suited. This test allows
comparison of single topics.

The next table is normalized. Every test figure shows the percentage execution
speed compared to the Lilith. However, this normalization is not made with the idea
of comparing of the figures of computer x with the figures of the Lilith. The figures
should be inspected row-wise. Speed differences for different topics on the same
computer show architectural differences between the inspected computer and the
Lilith.

104

Normalized(% of Lilith's computation of the same test)

facility Lilith PDPll/ 40 Alto 2 MC68000 VAX 111750 PERQ Lilith
(EIS} 8MHz com pat. faster

a empty REPEAT loop 100 57 87 83 96 131
b empty WHILE loop 100 55 35 82 78 92 125
c empty FOR loop 100 54 41 76 81 60 125
d CARDINAL arithmetic 100 45 29 57 62 66 117
e REAL arithmetic 100 3 111
f sin, exp, In, sqrt 100 114
g array access 100 46 29 70 74 97 125
h same with bound test 100 12 29 69 21 80 125

matrix acces 100 47 22 65 69 80 126
j same with bound test 100 13 22 66 22 79 121
k call of empty procedure 100 26 28 89 37 65 130
I with 4 parameters 100 31 34 84 44 73 131
m copying arrays 100 17 89 84 17 175 152
n access via pointers 100 52 43 78 40 130
o reading a disk stream 100 45 118

Two Liliths are compared, the last column is a Lilith with faster memory. Speeding
up the memory improved the Lilith about a factor 1.26, however it also changed the
order. Copying arrays is improved very similar to the memory speed increase,
CARDINAL arithmetic and REAL arithmetic are improved much less. Indeed, this
is not surprising.

The array copy test shows surprising figures on the Alto 2 and on the PERQ. These
machines will use a single instruction to copy arrays, as Lilith does. These figures
suggest that on the (older) Lilith the memory is too slow.

The PDP-11 array bound check, and the array copying are compiled into trap
instructions, resulting in relatively short code, showing clearly the speed penalty.

The Alto 2 has quite efficient pointers.

On the MC68000, CARDINAL arithmetic seems to be the less efficient.

The VAX 11/750 is measured in compatibility mode. In that mode REAL arithmetic
seems not to be supported. The numbers look similar to the PDP-11/40, maybe
more than really necessary, because the PDP compiler is used.

Generally, on the competitor machines, the three loops a)-c) are executed relatively
more efficiently than arithmetic, procedure calls or array access. This shows that the
optimizations of more complex subjects on the Lilith wins more than bare speed on
loops. The bare speed of instruction fetch played also a big role on the Lilith, it has a
special instruction fetch unit in hardware. However, other micro-programmed
computers also have hardware mechanisms to improve the instruction fetch.

105

Appendix 6: Jump optimization for IF statements
The following program part shows the optimization of the jump instructions for the
IF statement. The scanning of the program text is simplified for clarity. The chapter
"Statements compiled to simple instructions and jump optimization" describes this
algorithm in a more general way. See also [Wir5].
The compiler does not generate code for branches which never can be executed because of
constant expressions. This optimization is omitted in the following program, the jump
optimization is complex enough.

These declarations are local to the procedure which compiles the IF statement. If the
IF statements are nested, each IF statement gets its own instance of these variables.

TYPE
ListPtr = POINTER TOJumpRecord;
JumpRecord =

RECORD
nextPtr: ListPtr;
nextJump: CARDINAL;
endJump: CARDINAL

END;
VAR

lat: Attribut;
lp, jumplist: ListPtr;
shift, curPC, c: CARDINAL;

The code generation for the IF statement

IF sym = "IF" THEN
{ • analysis of the IF statement •)
jump list : = Nl L;
REPEAT

GetSymbol; Expression;
NEW{Ip); lpt.nextPtr: = jumplist; lpt.nextJump: = pc;
Emit(JPFC); Emit(O);
StatementSequence; (•termination with "END", "ELSIF", "ELSE"•)
lpt .endJump : = pc; jump list : = lp;
IF sym <>"END" THEN Emit{JPF); Emit(O) END;

UNTIL sym <> "ELSIF";
IF sy = "ELSE" THEN GetSymbol;

{ * the occurence of an "ELSE" can be detected
by jumplistt .endJump<>PC •)

StatementSequence (•termination with "END"•)
END;
GetSymbol; { • skip endsy •)

(• compute total displacement; pass the -IF statement
in the reverse direction *)

shift : = 0; lp : = jumplist;
\AIUII !:= ln<''\Mll nn

106

(• test for the jump to the end •)
(... c gets the length of the jump instruction to the end *)
IF (pc + shift-lp-t.endJump) = 0 THEN c: = 0
ELSIF (pc + shift-lpt.endJump)>{255 + 1) THEN INC{shift); c: = 3
ELSEc:= 2END;
(* test for the jump to the next test or else part *)
IF {c + lpt.endJump-lp-t.nextJump))(255 + 1) THEN INC{shift) END;
lp: = lpt.nextPtr

END;

(* fix jump addresses and perform necessay code moves *)
lp: = jumplist; curPC: = pc;
WHILE lp<>NIL DO

(* handle the jump to the end *)
(• c gets the length of the jump instruction to the end *)
IF lpt.endJump<curPC THEN

IF shift>O THEN MoveCode(lpt .endJump, curPC-1, shift) END;
IF (pc-shift·lpt.endJump)>(255 + 1) THEN ·

lnsert(lpt.endJump + shift-1, JP);
lnsert2(1pt.endJump +shift pc-(lpt.endJump +shift));
DEC(shift); c : = 3

ELSE
lnsert(lpt.endJump +shift+ 1, pc-(lpt.endJump +shift+ 1));
c:= 2

END
ELSE c: = 0 (•no else part•)
END;
curPC: = lpt.nextJump;
(* handle the jump to the next test or else part *)
IF shift>O THEN MoveCode(lpt.nextJump, Jpt.endJump-1, shift) END;
c: = c + lpt.endJump-lpt.nextJump-1;
IF c>255 THEN

lnsert(lpt.nextJump + shift-1, JPC);
lnsert2(1pt.nextJump +shift, c + 1);
DEC(shift)

ELSE
lnsert{lpt.nextJump +shift+ 1, c);

END;
lp : = lpt.nextPtr

END
END

107

Curricul urn vitae

On August 10, 1951 I was born in ZUrich, Switzerland. After six years of primary
school and two years of secondary school, I was admitted in 1967 to the Kantonale
Oberrealschule ZUrich, which I left in 1971 with the MaturiHit.

At the Swiss Federal Institute of Technology ZUrich I studied Mathematics from

1971 until I obtained, in 1976, the Diploma in Mathematics. Since then I have been

an assistant at the Institute for Informatics of the Swiss Federal Institute of
Technology.

